Mechanical Engineering and Mechanics MEM 493 Senior Design III

Spring 2007

Instructors: Dr. Mun Young Choi, x-6984, <u>choi@drexel.edu</u>

Dr. Wei Sun, x-5810, sunwei@drexel.edu

Office Hours: Office consultation is available from M-F from 9 to 6 PM. Contact Ms.

Kathie Donahue (x-1481) to schedule an appointment.

Teaching Asst: Mr. Jae Nam, jhn23@drexele.edu

Designation: Required

Catalog Description: Introduces the design process, including information retrieval, problem

definition, proposal writing, patents, and design notebooks. Includes presentations on problem areas by experts from industry, government,

and education

Prerequisites: MEM 230, MEM 238, MEM 355, and MEM 345

Textbook(s): Fundamentals of Engineering Design (ISBN 013046712)

By Barry Hyman, 2003

Design for Design for Six Sigma (ISBN 0071413766)

by Greg Brue and Robert G. Launsby, 2004

Grading Policy: Grade from Faculty Advisor: 60%

(includes grading of oral presentation delivered to faculty advisor)

Grade from Final Presentation: 15% Grade from SD Committee: 25%

A:90-100; B:80-89: C:70-79: D:60-69: F:0-59

Course Objectives: This course constitutes the first term of a three-term course sequence. It aims to train the students in identifying projects of relevance to the society, in planning and scheduling a solution, and in entrepreneurial activities that may result from the project.

- 1. Describe, understand, and implement the important elements of an engineering design process including:
 - Identifying the need
 - Problem definition
 - Searching for existing solutions
 - Defining constraints
 - Defining criteria
 - Developing alternative solutions
 - Providing detailed engineering analysis
 - Deciding on a final design
 - Specifying the requirements of the final design
- 2. Effectively communicate the ideas and processes involved in the final design through written and oral communication methods

- 3. Understand contemporary industry practices in the field of mechanical engineering
- 4. Acquire and analyze current and relevant information from a variety of literature sources
- 5. Understand the important role of ethics in the implementation of engineering projects
- 6. Develop experience and best practices in working in a team environment

Topics:

- 1. Effective Oral Presentations
- 2. Effective Written Reports
- 3. Safety Concerns in the Engineering Profession
- 4. Professionalism and Engineering Ethics
- 5. Sustainable Engineering

Class Schedule: 1 hours/week lecture (3 credits); 3 hours of meeting with team members and advisor per week

Contribution to Professional Component:

Relationship to Program Outcomes:

Outcomes a - k	Content	Explanation	Evidence
a. An ability to apply	2	This course requires students to draw	Design project pre-proposal
knowledge of math,		from their knowledge of their	evaluation, final written report
science		previous courses that serve as pre-	evaluation, and final oral
and engineering		requisite courses including but not	presentation evaluation
		limited to heat transfer,	
		thermodynamics, systems and	
		control, mechanics, calculus, physics,	
		chemistry, and biology	
b. An ability to design and	2	As part of the design project, students	Design project pre-proposal
conduct		are encouraged to develop design	evaluation, final written report
experiments as well as		prototypes for testing. Students are	evaluation, and final oral
to analyze and interpret data		also encouraged to develop	presentation evaluation
		simulations and models that are used	
		in conjunction with the physical	
		models to validate and further develop	
		the models	
c. An ability to design a	2	The assigned design problems are	Design project pre-proposal
system, component or		always required to meet societal or	evaluation, final written report
process to meet desired		industrial needs.	evaluation, and final oral
needs			presentation evaluation
d. An ability to function	2	Multi-disciplinary teams involving	Evaluation of design project pre-
on multidisciplinary teams		ME students with diverse	proposal
		concentration backgrounds are	
		encouraged. Multi-disciplinary teams	
		involving ME, EE, CE, MSE, CS, and	
		Biomed students are encouaraged	
e. An ability to identify,	2	The design project require students to	Design project pre-proposal
formulate and solve		identify, formulate and solve	evaluation, final written report
engineering problems		engineering problems.	evaluation, and final oral
			presentation evaluation
f. An understanding of	2	The importance of ethics is emphasized	Classroom discussion of ethical
professional and ethical		of the	issues that arise in the
responsibility		engineer's overall responsibility.	implementation of engineering
			design. Evaluation of ethical

g. An ability to communicate effectively	2	Written pre-proposal, written final report, and oral presentation are important components of this course	conduct of the project in the oral presentation and in the final written report Design project pre-proposal evaluation, final written report evaluation, and final oral presentation evaluation
h. The broad education necessary to understand the impact of engineering solutions in a global/societal context	2	The impact of engineering design on the environmental (pollution, greenhouse effect, etc.) and societal (the use of advanced engineering technology such as mechanization, tissue engineering, biological research, etc) issues are discussed during classroom discussion.	Classroom discussion of environmental and societal issues that arise in the implementation of engineering design. Evaluation of environmental and societal issues for the project in the oral presentation and in the final written report
i. A recognition of the need for and an ability to engage in lifelong learning	2	The implementation of the design and analysis required for a successful project will reveal to the students that there are elements of their technical knowledge that requires further study. This is especially true for projects that involve a multi-disciplinary approach for solution	Design project pre-proposal evaluation, final written report evaluation, and final oral presentation evaluation
j. A knowledge of contemporary issues	2	Research of information on current technology, best practices, etc is a critical component in the <i>identifying</i> the need, defining the problem, and searching for solution phases of the project	Design project pre-proposal evaluation, final written report evaluation, and final oral presentation evaluation
k. An ability to use the techniques, skills and modern engineering tools necessary for engineering practice	2	Team members are provided with a suite of software for analysis of heat transfer, fluid mechanics, systems, stress analysis, dynamic loading, etc. Students are also provided with an extensive suite of testing equipment	Design project pre-proposal evaluation, final written report evaluation, and final oral presentation evaluation

Prepared by: Dr. Mun Y. Choi and Dr. Wei Sun, September 2006