Mechanical Engineering and Mechanics

MEM 220 Basic Fluid Mechanics Analysis I

Winter/Spring 2007

Designation:	Required
Catalog Description:	Covers general physical properties of a fluid; kinetics of fluid motion; material derivative, vorticity, strain, and dynamics of fluids; and derivation of conservation laws in control volume form with applications.
Prerequisites :	TDEC 114 (Math Fundamentals of Engineering III) or MATH 200 (Multivariate Calculus)

Textbook(s) and other required material:

Required:

<u>Fundamentals of Fluid Mechanics</u> Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi, 5th Edition, John Wiley & Sons, Inc. ISBN 0-471-67582-2

Course Objectives:

- 1. Explain the critical properties of a fluid.
- 2. State Newton's Laws of Motion, Conservation of Mass, and Conservation of Energy (1st Law of Thermodynamics) as they apply to fluid mechanics.
- 3. Understand how each term of important fluid mechanics equations relates to these fundamental laws.
- 4. Classify fluid mechanics problems into several basic types.
- 5. Solve the basic types of fluid mechanics problems, including statics and dynamics (inviscid/viscous, internal/external, incompressible/compressible).
- 6. Justify the validity of assumptions necessary to simplify problems.
- 7. Predict the qualitative outcome of a given set of fluid conditions based on an intuitive understanding of fluid mechanics and dimensional analysis.
- 8. Analyze a real world fluid mechanics phenomenon, explain it to a non-engineer, and design a demonstration aid.

Topics:

- 1. Fluid properties
- 2. Hydrostatics and buoyancy
- 3. Steady, inviscid flow the Bernoulli equation
- 4. Fluid kinematics
- 5. Control volume analysis conservation of mass and energy
- 6. Dimensional analysis
- 7. Internal and external flow
- 8. Compressible flow

Class Schedule: 3 hours/week lecture (3 credits); 2 hours of recitation/ week (1credit)

Contribution to Professional Component:

Contributes toward the $1\frac{1}{2}$ year of engineering topics appropriate to developing the ability to work in the thermofluid systems area. Prepares students for classes in thermofluid system design.

Relationship to Program Outcomes:

Outcomes a - k	Content	Explanation	Evidence
a. An ability to apply knowledge	2	Students will use their skills in	Homework, exams, final
of mathematics, science		math, physics, chemistry and	project
and engineering		introductory engineering courses to	
		develop qualitative and quantitative	
		frameworks for fluid mechanics.	
b. An ability to design and conduct	1	Students will collect and analyze	Class demonstrations; final
experiments as well as		data in class and recitations for fluid	project
to analyze and interpret data		mechanics phenomena.	
c. An ability to design a system,	2	Students will design and build	Final project, homework,
component or process to meet		solutions to fluid mechanics	exams
desired needs		problems given realistic constraints.	
d. An ability to function on	0	NA	NA
multidisciplinary teams			
e. An ability to identify, formulate	2	Students will learn to classify,	Homework, exams, final
and solve engineering problems		simplify, and solve a variety of fluid	project
		mechanics problems.	
f. An understanding of professional	1	Professional responsibility will be	Classroom discussion, final
and ethical responsibility		emphasized in class and in the	project
		project presentation.	
g. An ability to communicate	2	Students will present their final	Homework, exams, final
effectively		project to an audience of non-	project
		engineers.	
h. The broad education necessary	1	Students will discuss societal	Classroom discussion;
to understand the impact		context in class and may choose to	Final project
of engineering solutions		address such issues in the final	
in a global/societal context		project.	
i. A recognition of the need for and	1	Students will identify, analyze, and	Final project
an ability to engage in lifelong		explain an applied problem of	
learning		interest.	
j. A knowledge of contemporary	1	Students will analyze classic fluid	Classroom discussion,
issues		mechanics problems in a	homework, exams, final
		contemporary context.	project
k. An ability to use the techniques,	1	Students may explore the use of	Final project
skills and modern engineering tools		computer simulations and physical	
necessary for engineering practice		modeling to relate fluid mechanics	
		concepts.	

Prepared by:

Dr. Alisa S. Morss, 13 November 2006