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Abstract

Previously [7, 8], we presented a methodology for translating math-
ematical formulas involving matrix operations, tensor products and a
special class of permutations, into programming constructs suitable to
a variety of parallel and vector machines. In this paper we discuss an
implementation of this methodology. As an application we derive a
program for computing an arbitrary multi-dimensional finite Fourier
transform using the CRAY Scientific Library routines for the CRAY
Y-MP.
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1 Introduction

In previous work [7, 8], we presented a methodology for translating mathe-
matical formulas involving matrix operations, tensor products and a special
class of permutations, into programming constructs suitable to a variety of
parallel and vector computers. This methodology is suitable to the design
and implementation of algorithms that can be described by mathematical
formulas of this type. Important examples are the finite Fourier Transform
[7, 9, 10] and block recursive matrix algorithms such as Strassen’s matrix
multiplication algorithm [8]. In this paper we discuss an implementation of
this methodology.

Assuming that we are given code segments implementing the computa-
tion y = Aix our goal is to produce a program implementing the linear
computation

y = (A1 ⊗ A2 ⊗ · · · ⊗At) x =

(
t⊗

i=1

Ai

)
x, (1)

where ⊗ denotes the tensor product. There are many different implemen-
tations, called tensor product schemata, of Equation 1 corresponding to dif-
ferent matrix factorizations of (A1 ⊗ · · · ⊗ At). We present a translation
scheme that can be used to map different factorizations into different pro-
gramming schemata. Each schema has different performance characteristics
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due to different addressing requirements, different memory locality, and vary-
ing amounts of vectorization and parallelism.

An important aspect of this paper is a description of the addressing re-
quirements needed to combine code segments into an arbitrary tensor product
schema. It is interesting to note that extra stride parameters, not usually
available, are needed to make the code sufficiently general to be used in an
arbitrary tensor product factorization. Provided that a code segment has ap-
propriate addressing parameters it can be inserted into any of our program
schemata. Therefore this approach provides a general mechanism for combin-
ing linear programs using the tensor product. This flexibility makes it easy
to mix and match different algorithms, incorporate improved algorithms, and
to reorganize a program to adapt to new architectures. Moreover, the ability
to easily combine a large collection of program modules in this manner is
necessary to implement complicated algorithms such as Fourier transform
algorithms that respect crystallographic symmetry [3, 2].

2 Tensor Product Factorizations

Let

A =




a1,1 · · · a1,n1

...
. . .

...
am1,1 . . . am1,n1


 ,

and

B =




b1,1 · · · b1,n2

...
. . .

...
bm2,1 . . . bm2,n2


 .

The tensor (or Kronecker) product, A⊗ B, of A and B is the block matrix
obtained by replacing each element of ai,j by the matrix ai,jB:


a1,1B · · · a1,n1B
...

. . .
...

am1,1B . . . am1,n1B


 .

The tensor product satisfies the following basic properties, where In is
the n × n identity matrix, indicated inverses exist, and matrix dimensions
are such that all products make sense.
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1. (αA)⊗B = A⊗ (αB) = α(A⊗ B).

2. (A+B)⊗ C = (A⊗ C) + (B ⊗ C).

3. A⊗ (B + C) = (A⊗ B) + (A⊗ C).

4. 1⊗A = A⊗ 1 = A.

5. A⊗ (B ⊗ C) = (A⊗B)⊗ C.

6. t(A⊗B) = tA⊗ tB.

7. (A⊗ B)(C ⊗D) = AC ⊗ BD.

8. A⊗ B = (Im1 ⊗ B)(A⊗ In2) = (A⊗ Im2)(In1 ⊗ B).

9. (A1 ⊗ · · · ⊗ At)(B1 ⊗ · · · ⊗ Bt) = (A1B1 ⊗ · · · ⊗ AtBt).

10. (A1 ⊗ B1) · · · (At ⊗Bt) = (A1 · · ·At ⊗ B1 · · ·Bt).

11. (A⊗ B)−1 = A−1 ⊗B−1.

12. Im ⊗ In = Imn.

All of these identities follow from the definition or simple applications of
preceding properties (see [5]).

Associated with the tensor product are a class of permutations called
tensor permutations. If π be a permutation of {1, . . . , t}, then the tensor
permutation associated with π is the permutation matrix defined by the
property Pπ(A1 ⊗ · · · ⊗ At) = (Aπ(1) ⊗ · · · ⊗ Aπ(t))Pπ. The special case
when there are only two factors is called the commutation theorem and the
associated permutation is called a stride permutation.

Definition 1 (Stride Permutation) Let x be a vector of length m and y
be a vector of length n.

Lmn
n (x⊗ y) = y ⊗ x.

The notation indicates that elements of a vector of length mn are loaded
into n segments each at stride n. If tx = (x0, x1, . . . , xmn−1), the transpose
of the column vector x, then

t(Lmn
n x) = (x0, xn, . . . , x(m−1)n, . . . , xn−1, x2n−1, . . . , xmn−1).
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Listed below are some of the important properties of stride permutations.
Proofs easily follow from the definition. A more complete discussion of tensor
permutations and their properties can be found in [6].

1. Lrst
s Lrst

t = Lrst
st .

2. LN
n L

N
N/n = IN .

3. Lrst = (Lrt
t ⊗ Is)(Ir ⊗ Lst

t ).

Theorem 1 (Commutation) If A is an m1×n1 matrix, and B is an m2×
n2 matrix, then

A⊗B = Lm1m2
m1

(B ⊗ A)Ln1n2
n2

(2)

If the input vector x is grouped into segments xn
i of length n beginning

with the element xi, then the operation A ⊗ In can be viewed as a vector
operation on vectors of length n.

(A⊗ In)x =




a0,0In . . . a0,m−1In
...

. . .
...

am−1,0In . . . am−1,m−1In






xn
0

xn
n
...

xn
(m−1)n


 =




a0,0x
n
0 + a0,1x

n
n + · · · + a0,m−1x

n
(m−1)n

...
am−1,0x

n
0 + am−1,1x

n
n + · · ·+ am−1,m−1x

n
(m−1)n


 .

This operation consists of scalar vector multiplications ai,jx
n
jn and vector

additions.
The operation y = (Im ⊗ B)x can be interpreted either as a loop or as a

parallel operation.

(Im ⊗ B)x =




B
B

. . .

B







xn
0

xn
n
...

xn
(m−1)n
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consists of m copies of B acting on the disjoint data xn
in. It is possible to

exchange parallel operations for vector operations, and vice versa, with the
use of the commutation theorem.

Let Ami,ni be an mi × ni matrix. The general tensor product operation

y = (Am1,n1 ⊗ · · · ⊗ Amt,nt)x

can be written in many different ways, leading to many different implemen-
tations. We present three different factorizations that can easily be proven
using induction and properties of the tensor product and stride permuta-
tions. Let N(i) = n1 · · ·ni, for 1 ≤ i ≤ t, N = N(t), and N(0) = 1. Also, let
N̄(i) = N/N(i). Similarly, let M(i) = m1 · · ·mi, M = M(t), M(0) = 1, and
M̄(i) = M/M(i).

Theorem 2 (Fundamental Factorization)

Am1,n1 ⊗ · · · ⊗ Amt,nt =
t∏

i=1

(
IN(i−1) ⊗Ami,ni ⊗ IM̄(i)

)
.

The special case when Am1,n1 = · · · = Amt,nt is highlighted in the following
corollary.

Corollary 1 Let A be an m× n matrix. Then

t⊗
i=1

A = A⊗ · · · ⊗ A =
t∏

i=1

(Ini−1 ⊗A⊗ Imt−i) .

If mi = ni then all of the factors in the Fundamental factorization com-
mute and the factorization is true for any ordering of the product. However,
if the matrices are rectangular, the factors no longer commute as seen in
Property 8 of the tensor product. In this case Property 8 can be used to
obtain the following Corollary of Theorem 2.

Corollary 2 (Fundamental Factorization) Let π be a permutation of the
set {1, . . . , t}, and let p(i, j) = mj if π(i) comes before π(j) in the sequence
(π(1), . . . , π(t)) and nj otherwise. Then

Am1,n1 ⊗ · · · ⊗Amt,nt =
t∏

i=1

(
IP (i) ⊗Amπ(i),nπ(i) ⊗ IP̄ (i)

)
,

where P (i) =
∏π(i)−1

j=1 p(i, j) and P̄ (i) =
∏t

j=π(i)+1 p(i, j).
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The fundamental factorization can be modified to obtain several equiva-
lent forms.

Theorem 3 (Parallel Factorization)

Am1,n1 ⊗ · · · ⊗ Amt,nt =
t∏

i=1

LN(i−1)M̄ (i−1)
mi

(
IN(i−1)M̄ (i) ⊗ Ami,ni

)
.

Theorem 4 (Vector Factorization)

Am1,n1 ⊗ · · · ⊗ Amt,nt =
t∏

i=1

(
Ami,ni ⊗ IM̄(i)N(i−1)

)
LM̄ (i)N(i)

ni
.

3 Indexing Notation

Let em
i be the vector of length m with a one in the i-th position and zeros

elsewhere. The set {em
i , i = 0, . . . , m − 1} form the standard basis for the

vector space, Fm, ofm-tuples of elements in the field F. These basis elements
serve as placeholders for the elements of the vector x =

∑m−1
i=0 xie

m
i , and

since we are interested in linear computations, the computation y = Ax is
completely described in terms of these basis elements.

Closely associated with the basis elements em
i are the basis elements, tem

i

of the dual space, which serve as access operators. If X is an array of size m
containing the elements of the vector x, the array access X[i] is equivalent
to applying the access operator tem

i to the vector x (i.e. tem
i x = xi). We will

use the notation X[tem
i ] to denote the evaluation of the access function tem

i

applied to the vector x. Storing an element in the i-th position of a vector,
y, is the dual operation and is denoted by Y [em

i ]. The indexing operations
of a linear computation can be described using access and storage operators.

Since we are interested in writing programs to compute y = (Am1,n1 ⊗
· · · ⊗ Amt,nt)x we need bases of FM and FN (where M = m1 · · ·mt and
N = n1 · · ·nt) that are compatible with Am1,n1 ⊗ · · · ⊗ Amt,nt. Using the
bilinearity of the tensor product, it is easy to see that the collection of vectors
x1 ⊗ · · · ⊗ xt, where xi ∈ Fni , form a vector space, Fm1 ⊗ · · ·Fmt , called the
tensor product of the vector spaces Fmi , which is isomorphic to FM . The
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benefit of using this representation of FM is that it is compatible with the
tensor product. Property 9 of the tensor product shows that (Am1,n1 ⊗ · · ·⊗
Amt,nt)(x1 ⊗ · · ·xt) = Am1,n1x1 ⊗ · · · ⊗Amt,ntxt.

Definition 2 (Tensor Basis) The collection of elements em1
i1 ⊗ · · · ⊗ emt

it

form a basis, called the tensor basis, for Fm1 ⊗ · · · ⊗ Fmt and hence a basis
for FM .

The connection between this basis and the standard basis for FM is given by
the equation

em1
i1 ⊗ · · · ⊗ emt

it = eM
i1M̄(1)+···+it−1M̄(t−1)+itM̄(t). (3)

This equation is equivalent to lexicographically ordering the elements of the
tensor basis. Just as we interpreted the basis elements em

i and the dual basis
elements tem

i as storage and access operators, the elements of the tensor
basis can be viewed as indexing operators and Equation 3 shows that these
operators are equivalent to storing and accessing a multi-dimensional array
that is ordered lexicographically.

3.1 Block Access Operators

The notation
X[ tem1

i1 ⊗ · · · ⊗ temk
ik
⊗ · · · ⊗ temt

it ]mk−1
ik=0

denotes a vector of length mk whose k-th component is X[i1M̄(1) + · · · +
ikM̄(k) + · · ·+ itM̄(t)] for ik = 0, . . . , mk − 1. This subvector obtained from
X can be conveniently described using a based vector with stride.

A based vector with stride,

xn
b,s = {x+ b, x+ b+ s, x+ b+ 2s, . . . , x+ b+ (n− 1)s}

is a vector of length n with stride s and base b. We have the notationally
useful defaults: if there is no n, assume n = 1, if no s, s = 1, and if no b, b = 0.
Note this is consistent with the usual coordinate notation; x0, x1, . . . xm−1 is
a collection of m vectors of length 1.

In the example above, the operator that accesses mk elements of the
vector x is t(em1

i1 ⊗ · · · ⊗ Imk
⊗ · · · ⊗ emt

it ). The particular based vector
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with stride obtained by applying this block access operator is given by the
following equation.

t(em1
i1 ⊗ · · · ⊗ Imk

⊗ · · · ⊗ emt
it )X =

Xmk

i1M̄(1)+···+ik−1M̄(k−1)+ik+1M̄(k+1)+···+itM̄(t), M̄(k)

These considerations lead to an even more general notation which is useful
in describing our programming schemata.

xm,n
b,u,s =
{x + b, x + b + s, x + b + 2s, . . . , x + b + (n− 1)s,
x + b + u, x + b + u + s, x + b + u + 2s, . . . , x + b + u + (n− 1)s,
x + b + 2u, x + b + 2u + s, x + b + 2u + 2s, . . . , x + b + 2u + (n− 1)s,
.

.

.

x + b + (m− 1)u, x + b + (m− 1)u + s, x + b + (m− 1)u + 2s, . . . , x + b + (m− 1)u + (n− 1)s}

where u is called the base stride. This is a vector of length mn; it is often
convenient to think of it as m vectors of length n, but this is still one vector
(i.e. it is raveled in the way indicated.)

3.2 Examples

The following two examples illustrate the use of this notation. Consider
the linear computation corresponding to the stride permutation. The stride
permutation can be described by its action on the tensor basis Lmn

n (em
i ⊗en

j ) =
en

j ⊗em
i , and the corresponding program is described by the evaluation of the

access and storage operators Y [en
j ⊗ em

i ] = X[ t(em
i ⊗ en

j )]. The program is
given by a nested loop implementing the following sum.

y = Lmn
n x = Lmn

n


∑

i,j

X[t(em
i ⊗ en

j )](e
m
i ⊗ en

j )




= Lmn
n


∑

i,j

xin+j(e
m
i ⊗ en

j )
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=
∑
i,j

xin+j(e
n
j ⊗ em

i )

=
∑
i,j

xin+je
mn
jm+i.

In the second example we derive the indexing needed to implement y =
(Ip ⊗A⊗ Iq)x, where A is an m× n matrix. In this case the computation is
described by the following equation.

Y [ep
i ⊗ Im ⊗ eq

k] = AX[t(ep
i ⊗ In ⊗ eq

k)].

This equation, interpreted using the based vector with stride notation, yields

Y m
imq+k,q = AXn

inq+k,q.

The notation can be justified by the following basis computation.

(Ip ⊗A⊗ Iq)(e
p
i ⊗ en

j ⊗ eq
k) = (ep

i ⊗Aen
j ⊗ eq

k)

= ep
i ⊗

m−1∑
j′=0

Aj′,je
m
j′ ⊗ ep

k

=
m−1∑
j′=0

Aj′,j(e
p
i ⊗ em

j′ ⊗ eq
k)

A program implementing the linear computation y = (Ip ⊗ A ⊗ Iq)x would
perform the computation Y m

imq+k,q = AXn
inq+k,q for each value i = 0, . . . , p−1

and k = 0, . . . , q − 1.

Schema 1 The linear computation

y = (Ip ⊗ Am,n ⊗ Iq)x

can be implemented as follows:

for i = 0, . . . , p− 1

for k = 0, . . . , q − 1

Y m
imq+k,q ← AXn

inq+k,q
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4 Programming Schemata

A programming schema for the linear computation y = (Am1,n1 ⊗ · · · ⊗
Amt,nt)x is a template containing all of the indexing information needed to
implement the computation. The schema can be executed provided programs
implementing y = Ami,nix are provided that are compatible with the indexing
requirements of the schema. In this section we derive programming schemata
based on the different factorizations of Am1,n1⊗· · ·⊗Amt,nt presented in Sec-
tion 2. All of the factorizations have factors of the form I ⊗A⊗ I which can
be implemented using the schema in Section 3.

A tensor product factorization is evaluated by applying each factor in
turn, (for i = t downto 1), starting with the input vector x, using appro-
priate temporaries, to ultimately produce the output vector y. The indexing
for each factor is determined by selecting a compatible input and output
basis. Note that each factor is tensor-compatible with the next, in the sense
that the output of one stage has a compatible tensor basis with the input of
the next.

We begin by considering the fundamental factorization (Theorem 2). A

generic element of the input basis for the i-th stage is e
N(i−1)
ji

⊗eni
ki
⊗eM̄(i)

li
and

a generic element of the output basis for the i-th stage is e
N(i−1)
ji

⊗emi

k′
i
⊗eM̄ (i)

li
.

Therefore the code segment for the i-th stage can be denoted by

Y [e
N(i−1)
ji

⊗ Imi
⊗ e

M̄(i)
li

] = Ami,niX[(t(e
N(i−1)
ji

⊗ Ini
⊗ e

M̄(i)
li

],

which, using based vector with stride notation, can be written

Y mi

jimiM̄(i),M̄(i)
= Ami,niXni

jimiM̄(i),M̄(i)
.

Separate subscripts for each stage are not necessary since the output basis
of the i-th stage has the same form as the input basis for the (i−1)-st stage.
An output basis for the i-th stage is

e
N(i−1)
j′i

⊗ emi

k′
i
⊗ e

M̄(i)
l′i

and an input basis for the (i− 1)-st stage is

e
N(i−2)
ji−1

⊗ e
ni−1

ki−1
⊗ e

M̄(i−1)
li−1

.
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Since N̄(i− 1) = niN̄(i− 2) we can split the element e
N̄(i−1)
j′i

as

e
N̄(i−1)
l′i

= eN̄(i−2)
α ⊗ e

ni−1

β ,

where j′i = αni−1 + β. In this way, we can rewrite the basis of the output of
i-th stage as

eN(i−2)
α ⊗ e

ni−1

β ⊗ emi

k′
i
⊗ e

M̄(i)
l′i

.

Similarly, we can rewrite the basis for the input of the (i− 1)-st stage as

e
N(i−2)
ji−1

⊗ emi
ki−1
⊗ emi

δ ⊗ eM̄(i)
γ ,

where ji−1 = δM̄(i) + γ.
Composing the code sequences for the i stages from i = t down to 1 we

obtain a schema implementing the factorization given by Theorem 2.

Schema 2 The linear computation

y = (Am1,n1 ⊗ · · · ⊗ Amt,nt)x

can be implemented as follows:

for i = t, t− 1 . . . , 1

for j = 0, . . . , N(i− 1)− 1

for l = 0, . . . , M̄(i)− 1

Y mi

jmiM̄(i)+l,M̄(i) ← Ami,niXni

jniM̄(i)+l,M̄(i)

In the notation for Schema 2 we have obscured the fact that the output of
one stage must be the input of the next stage.

The special case, where each of the Ai’s are the same, is of such impor-
tance that we state it explicitly.

Schema 3 Let A be an m× n matrix. The linear computation

y =

(
t⊗

i=1

A

)
x
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can be implemented as follows:

for i = t, t− 1 . . . , 1

for j = 0, . . . , ni−1 − 1

for l = 0, . . . , mt−(i+1) − 1

Y m
jmt−i+1+l,mt−i ← AXn

jnmt−i+l,mt−i

Similar schema can be developed for other factorizations. As a second
example, we derive the schema for Theorem 4. An input basis for the i-th

stage of this factorization is e
M̄ (i)N(i−1)
j ⊗ eni

k and an output basis for the i-th

stage is emi
k′ ⊗eM̄(i)N(i−1)

j . Therefore the code for the i-th stage can be denoted
by

Y [Imi
⊗ e

M̄(i)N(i−1)
j ] = Ami,niX[t(e

M̄(i)N(i−1)
j ⊗ Ini

],

which using based vector with stride notation is equivalent to

Y mi

j,M̄(i)N(i−1)
= Ami,niXni

jni,1.

Schema 4 The linear computation

y = (Am1,n1 ⊗ · · · ⊗ Amt,nt)x

can be implemented as follows:

for i = t, t− 1 . . . , 1

for j = 0, . . . , M̄(i)N(i− 1)− 1

Y mi

j,M̄(i)N(i−1)
← Ami,ni

i Xni
jni,1

4.1 Vector Schemata

In Section 2 we indicated that the tensor product operation A⊗ In could be
interpreted as a vector operation on vector of length n. In this section we
show how to include this vector interpretation in our programming schemata.
The key idea is to apply the linear computation y = Ax to appropriately
accessed vectors.
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Consider the indexing notation Y [ep
i ⊗ Im ⊗ eq

k] = AX[ep
i ⊗ In⊗ eq

k], used
to describe the linear computation y = (Ip ⊗A⊗ Iq)x, where A is an m× n
matrix. We can view this code applied to vectors of length q by combining
the q copies of the computation ep

i ⊗Aem
j ⊗eq

k for k = 0, . . . , q−1 into a single
vector operation. The subvector accessed by X[ep

i ⊗ en
j ⊗ Iq] = Xq

inq+jq,1 and

the subvector needed for the vector computation A⊗Iq is X[ep
i⊗In⊗eq

k]
q−1
k=0 =

X[ep
i ⊗ In ⊗ Iq] = Xn,q

inq,q,1. Therefore we use the notation

Y [ep
i ⊗ Im ⊗ Iq] = (A⊗ In)X[ep

i ⊗ In ⊗ Iq],

which stated using based vector with stride notation is

Y m,q
imq,q,1 = (A⊗ In)X

n,q
inq,q,1.

Schema 5 The linear computation

y = (Ip ⊗ Am,n ⊗ Iq)x

can be implemented using the following vector schema:

for i = 0, . . . , p− 1

Y m,q
imq,q,1 ← (A⊗ Iq)X

n,q
inq,q,1

Using this idea, the Schemata 2 and 4 can be converted into vector
schemata.

Schema 6 The linear computation

y = (Am1,n1 ⊗ · · · ⊗ Amt,nt)x

can be implemented as follows:

for i = t, t− 1 . . . , 1

for j = 0, . . . , N(i− 1)− 1

Y
mi,M̄(i)

jmiM̄(i),M̄ (i),1 ← (Ami,ni ⊗ IM̄(i))X
ni,M̄(i)

jniM̄(i),M̄ (i),1
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Schema 7 The linear computation

y = (Am1,n1
1 ⊗ · · · ⊗ Amt,nt

t )x

can be implemented as follows:

for i = t, t− 1 . . . , 1

Y
mi,M̄(i)N(i−1)

0,M̄(i)N(i−1),1
← (Ami,ni

i ⊗ IM̄(i)N(i−1))X
ni,M̄(i)N(i−1)
0,1,ni

5 Computer Implementation

Returning to our original goal of combining code segments of the form y =
Aix into a program implementing the linear computation

y =

(
t⊗

i=1

Ai

)
x,

we now show how the code segment y = Aix must be parameterized to be
used in the schemata derived in Section 3 and Section 4.

For example, let’s consider the vector Schema 5 in Section 4. Let A be
an m× n matrix and

y = (Ip ⊗ A⊗ Iq)x

coded as

for i = 0, . . . , p− 1

y = (A⊗ Iq)x

≡
for i = 0, . . . , p− 1

ym,q
imq,q,1 ← (A⊗ Iq)x

n,q
inq,q,1

Where for each i we need new vectors of length q at base inq on input and
imq on output. The general set of parameters needed to implement (A⊗ Iq)
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in this context is

A(m,n, y, a, u, s, x, b, v, t, d) ≡
for α = 0, . . . , m− 1

yd
a+αu,s ← 0

for β = 0, . . . , n− 1

yd
a+αu,s ← yd

a+αu,s + Aα,βx
d
b+βv,t

where m and n are the output and input dimensions of the matrix A and
y, a, u, s, d describes the vector notation

yd
a,u,s

a vector y of length d, with base a, base stride u, and stride s. This code is
just a matrix-vector product with several additional parameters needed to be
used in our vector schemata. We sketch a FORTRAN fragment, showing how
this might be coded. We use the complex versions of the BLAS routines [4, 1]
copy and saxpy to emphasize the embedded vector instructions.

do ia = 0,m-1

call ccopy(d,(0.0,0.0),0,y(a+ia*u),s)

do ib = 0,n-1

call caxpy(d,aa(ia,ib),x(b+ib*v),t,y(a+ia*u),s)

end do

end do

Where ia is α, ib is β, and aa is the matrix of coefficients corresponding to
A.

6 Applications

In this section we will derive a program to compute the t-dimensional Fourier
transform. This problem arises in programming Fourier transforms that re-
spect crystallographic symmetry [2] on the CRAY Y-MP. The t-dimensional
Fourier transform can be written

y = Fn1 ⊗ · · · ⊗ Fnt
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where Fn is the n-point Fourier transform. Therefore, we can use the schemata
developed in this paper to implement this computation. Since in the appli-
cation on the CRAY Y-MP we have vector instructions available, we shall
use the vector Schema 7.

In the case of the t-dimensional Fourier transform all the matrices are
square, so that mi = ni and the index computations are greatly simplified.
We first show an example implementation in FORTRAN of the Fourier trans-
form with sufficient parameters to be used in our schema. This follows the
example fragment in Section 5. It computes the Fourier transform directly
from the definition and is not meant to be efficient, but simply to show the
use of the parameters. Also, we have reversed the positions of the input and
output vectors to conform with the BLAS and CRAY Library conventions.

subroutine fnv(n,

& x, bx, inc1x, inc2x,

& y, by, inc1y, inc2y,

& d

& )

*

* computes the Fourier Transform y = F_n(x)

* from the definition.

*

* includes sufficient parameters to be used in

* our vector schema.

*

integer n

*

complex x(0:*)

integer bx ! base

integer inc1x ! base stride

integer inc2x ! vector stride

*

complex y(0:*)

integer by ! base

integer inc1y ! base stride

integer inc2y ! vector stride

*
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*

*****************************************************

complex iota

parameter(iota = (0.0,1.0))

real pi

complex w

complex ca

integer basex, basey

integer iy,ix

pi = atan2(0.0, -1.0)

w = exp((2*pi*iota/n))

do iy = 0, n-1

basey = by + iy*inc1y

call ccopy(d,(0.0,0.0),0,y(basey),inc2y) !zero y

do ix = 0, n-1

ca = w**(ix*iy)

basex = bx + ix*inc1x

call caxpy(d,ca,x(basex),inc2x,y(basey),inc2y)

end do ! ix

end do ! iy

return

end ! fnv

This subroutine can now be used to implement schema 7. Here is a
FORTRAN fragment showing this implementation. (Letting nn = N .)

call ccopy(nn,x,1,t,1)

do i = t,1,-1

call fnv(n(i),t,0,1,n(i),y,0,nn/n(i),1,nn/n(i))

call ccopy(nn,t,1,y,1)

end do
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In the scientific libraries that Cray Research distributes with UNICOS
6.1, there is a Fast Fourier Transform routine, MCFFT, that can be used to
efficiently implement the arbitrary tensor product of Fourier Transforms.
With the machinery we have developed in the first part of this paper, we will
show how to compute the appropriate calls to MCFFT.

We first abstract the man page [1] for the routine. The library routine
MCFFT applies a multiple multitasked complex Fast Fourier Transform. Its
synopsis is

CALL MCFFT(isign, n, m, scale,

x, inc1x, inc2x, y, inc1y, inc2y,

table, ntable, work, nwork)

MCFFT computes the Fourier Transform of each column of the complex matrix
x, and stores the results in the columns of the matrix y. If x and y were
dimensioned as:

complex x(0:n-1, m), y(0:n-1, m)

then MCFFT computes Fn for each of the m columns of x and stores the re-
sult in the corresponding columns of y. The routine is vectorized along the
columns and therefore, in our terminology, is an implementation of Fn⊗ Im.
Furthermore, if n is sufficiently large, MCFFT will multitask.

The important parameters for our schema are x and y together with their
increment parameters inc1x, inc2x, inc1y, and inc2y. The first increment
inc1x is the x increment in the first dimension. That is the distance between
successive complex array elements within each column of the input array x.
The second increment parameter, inc2x, is the x increment in the second
dimension. That is the distance between successive complex array elements
within each row of the input array x. And similarly for the array y. Suitably
interpreted, these parameters can be used to implement our vector Schema 7.

For the sake of completeness we sketch the meaning of the other parame-
ters: table is a real array of size ntable which is used to hold the initialized
trigonometric constants between calls to Fourier Transforms of the same size
n. The real array work of size nwork is a temporary working array supplied by
the caller. The integer isign is a switch: if 0, then simply initialize table, if
1, compute the forward transform, and if -1, compute the inverse transform.
The real scale is used to scale the output y so that the true inverse can be
obtained.
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With this introduction then the following call to MCFFT, corresponds to
our call to fnv in the program fragment above.

call mcfft(1,n(i),nn/n(i),1.0,

& t,1,n(i),y,nn/n(i),1,

& table, ntable, work, nwork)
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