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1 Introduction

In 1965, Cooley and Tukey [11] presented a divide and conquer algorithm,
called the Fast Fourier Transform (FFT), for computing the Fourier trans-
form of a sequence of n points. The FFT has a long and interesting his-
tory [10].

Cooley and Tukey considered the problem of computing

N-1
X(@y) = ZA(k)ij, G=0,1,...,N—1, W= exm/N (1)
k—0

given a complex function A(k).

Their algorithm is obtained by viewing the functions X and A as functions
of two variables and rearranging the sum in Equation 1 as a nested sum. Since
the material in this paper is closely modeled on the ideas in the paper by
Cooley and Tukey, we reproduce their derivation.

To derive the algorithm, suppose N is composite, i.e., N = rirs. Then let
the indices in (1) be expressed

j:j1r1+j07j0:0717"'7r1_17 j1:0717"'7r2_17 (2>
k‘:k‘l’l”2+k‘0,k‘0:0,1,...,7”2—1, k1:0,1,...,r1—1.

Then, one can write

X(j1,d0) = Y > Alkr, ko) WIkrzwiko, 3)
ko ki
Since
ijlTZ :I/Vjolcl”r‘z7 (4>

the inner sum, over ki, depends only on jo and ky and can be defined as a
new array,

A1(o, ko) = > Alkey, ko) Wiokir=, )
k1

The new result can then be written

X (J1,d0) = ZAl(jmk‘o)W(jmﬂo)ko. (6)
ko

Alternative algorithms have been presented when r; and ry are relatively
prime [13]. The approach of Cooley and Tukey has been used to obtain mul-
tidimensional Fourier Transform Algorithms. The “vector radix” algorithm



was presented in [15, 23], and a more general multidimensional algorithm
was independently presented in [4] and [22].

Recently the authors have generalized the Cooley-Tukey algorithm to
apply to an arbitrary finite Abelian group [1|. This algorithm computes the
Fourier Transform of a finite Abelian group using the Fourier transform of an
arbitrary subgroup and the Fourier transform of the quotient group obtained
by moding out by the chosen subgroup. The construction uses an arbitrary
choice of coset representatives for the quotient group. Different choices of
coset representatives lead to different data flow in the algorithm and different
twiddle factors. These results generalize all of the known Cooley-Tukey type
algorithms, including those mentioned above, and provides new algorithms
with alternative data flow.

The results in [1] were obtained using the theory of induced representa-
tions; similar in spirit to recent work on algorithms for the computation of
Fourier transforms of non-Abelian groups (8, 9, 12, 24]. In this paper an al-
ternative combinatorial proof is presented. This proof generalizes the original
proof used by Cooley and Tukey. The benefit of this approach is that it pro-
vides an explicit formula that can be used for constructing multidimensional
Fourier Transform algorithms. A meta-algorithm is provided that, given a
presentation for an Abelian group, a presentation for a subgroup, a set of
coset representatives for the quotient group, and a set of coset representatives
for a related quotient group in the dual group, constructs a matrix factor-
ization of the Fourier transform of A. This matrix factorization provides an
algorithm for computing the given multidimensional Fourier transform.

In Section 2 the Fourier transform of a finite Abelian group is defined. A
proof of the main result is presented in Section 3. Section 4 shows how to
apply the results about Abelian groups to multidimensional Fourier trans-
forms, and Section 5 presents some concrete examples. In particular, it is
shown how to obtain the existing algorithms as special cases of the gen-
eral algorithm. In addition a class of examples are presented that could not
have been computed with existing algorithms. Finally, Section 6 discusses
the consequences of the results in this paper to the implementation of high
performance multi-dimensional Fourier transform algorithms.



2 The Fourier Transform of a Finite Abelian
Group

Let A be a finite Abelian group whose order is denoted by |A| (the group
operation will be denoted by +). The set of complex valued functions on A
with inner product

acA

form an inner product space denoted by L?(A).
A non-zero function x € L?(A) such that

x(a1 + az) = x(a1)x(az) for ay,as € A,

is called a character. If a € A is of order n, then y(a)” = 1, and therefore
Ix(a)] = 1 and x(—a) = x(a).

If x1 and x» are characters then we can define (x1 + x2)(a) = x1(a)xz2(a).
Under this operation the set of characters form a group, called the dual or
character group, which we will denote by A. It is well known that A is
isomorphic to A (see Section 4 and [14]).

Suppose that x # 1, then there exists a; € A such that y(a;) # 1. Since,

> oxla) = > xla+a) = x(a1) Y x(a)

acA acA acA

(1—=x(a1)) Xucax(a) = 0, and since x(a1) # 1, > .4 x(a) = 0. The following
property easily follows from this calculation.

Lemma 2.1 Let x1, X2 € A.

. 1 1fX1:X2
<X“X2>{ 0 i v1 e

This lemma implies that A is an orthonormal basis for 12 (A). Hence, an
arbitrary function, f € L*(A) can be written uniquely as

= > fOOx(@), where f(x) = (f,x). (7)
xEA

This is the Fourier series expansion of the function f. The coefficients in
this expansion are called the Fourier coefficients and are obtained from the
Fourier transform of f.



Definition 2.1 (Fourier Transform)
The Fourier transform of A, F(A) : L2(A) — L2(A) is defined by

D0 = F0 = o X F@x@ - (..

acA

3 A Divide and Conquer Algorithm

Let {,):AX A — C be the bilinear pairing of A with its dual A defined by
{a,a) = a(a).

Let B < A be a subgroup of A. Corresponding to B we can form a subgroup,
Bt of Aequal to {a € A| (b,a) = 1, for b € B}, the characters that are
perpendicular, with respect to (, ), to the subgroup B.

Since a € B* is equal to 1 on B, we can identify it with a character on
C' = A/B, by setting a(a+ B) = a(a). Likewise given a character, ¢, of A/B,
we can obtain a character in B+, by composing the projection A — A/B
with ¢. Therefore B+ is 1som0rph1c to C'.

A character, a € A restricted to the elements of B is a character of B
denoted by alg. The restriction map, a +— d|g is a homomorphism from
A — B with kernel B-. Since |B+| = |A/B| and |A| = |A|, |A/Bt| = |B]
and the restriction map is onto; therefore

A/BF~ B,

As a result of this isomorphism there are |B*| = |C] characters in A that
restrict to each character in B. Moreover, these are the characters in the
cosets of A/B*.

Let C = A/Band B= A/BL. Let € : C' — Aand /) : B — A be a choices
of coset representatives. The following theorem shows how to compute F(A)
using |C| copies of I'(B), | B| copies of F'(C') and |A| complex multiplications.
The complex multiplications depend on the choices of coset representatives
¢ and 7.

To simplify the notation used in the following theorem and proof we will
remove the normalization constant 1/|A| and conjugation in the definition of
the Fourier transform and compute

= [(a){a,a)

acA

6



There is no harm in doing this since the constants and conjugation can easily
be reinserted.

Theorem 3.1 Let B< A, C = A/B, C' = B*, AE:z{l/CA’,f:C’—nél be a
choice of coset representatives for A/B, and 7 : B — A be a choice of coset
representatives for A/C. Then

cceC beB

f@)=>Y (c.e) <<f<c>, A0 Y fero (b) (b, 6>) .

where fey(b) = f(b+&(c)) and a € A=p) +¢ withbe B andé e C.

Proof. Using the coset decompositions of {1/ B and 121/ (' the indexing sets
can be written as A = B x £(C) and A = (' x i(B), and

f@ = 3 fla)aa) (8)

acA

= 33 feo®) b+ E(e), &+ (b)) (9)

ccC beB

Using the bilinearity of <, > this is equal to

SN fea () (b,6) (€(0). ) (b,0(b)) (E(c), (D)), (10)

ccC beEB

Since ¢ € B, < b,¢ >= 1 and Equation 10 is equal to

322 Jea(0){E(e). & (b, n(B) (), (b)) (11)

ccC beB

~
A

Furthermore, since (¢(c), ¢) and (£(c), 7(b)) do not depend on the inner sum-
mation index b, this is equal to the nested sum

> (&), 0) (<£<c>,ﬁ<?>>> > fs<c><b><b,ﬁ<?>>>) . (12)

ceC beB

~

Finally, since ({(c),¢) and (b,7)(b)) are independent of the choice of coset
representatives &(c) and 7(b) this completes the proof. 1

This theorem is the basis for a divide and conquer algorithm for comput-
ing F'(A), which we now describe.



1. Compute fg@ = F(B) fe() for c € C.

~

2. Compute g,q for b € B, where i () = (o), ﬁ(?)»fg(c)(?)) force C.
3. Compute g, = F'(C) g, for be B.

Observe thfit j%(c) e L3(B), 9ngiy € 2O, Gaiy € 112(6’)i and by Theorefn 3.}
G5y (€) = f(N(b) + ¢). Since any a can be written as 7)(b) + ¢ for some b € B
and ¢ € C , all of the values of the function f = F(A)f have been computed.

To implement this algorithm the elements of A and A must be ordered.
Ordering the elements of A and A fixes the representations of the functions f
and f, introducing data permutations or index computations when accessing
the values of f¢() and 9i)» and storing the values of gﬁ@).

If the elements of A are ordered then f can be viewed as a vector whose
indices are the elements of A. Step (1) of the above algorithm first creates
|C| functions of B denoted by fe(). If the elements of B are ordered then
the functions f¢) can be represented by subvectors obtained from f. The
subvectors fe¢() can be ordered using the order of the coset representatives
£(C). Therefore the first part of Step (1) corresponds to a permutation of
the vector f. This permutation is determined by the order of the elements
of A, the subgroup B, and the coset representatives £(C'). It corresponds to
permuting the indexing set A to £(C') x B.

After the vectors fe() are gathered, fg(c) = F(B) fe() is computed for
each ¢ € C. Step (2) then creates |B| = |B| functions of C. For each b € B
the function g, defines a function of C'. If the functions fg(c) are stored as
vectors the computation of 50 Tequires a stride permutation followed by a
diagonal multiplication (called the “twiddle factor”). The stride permutation
gathers the elements of each vector fg(c) indexed by b. The twiddle factor
multiplies fe( (0) by (£(c),7(b))-

Finally, Step (3) performs |B| computations of the Fourier transform on
C 9y = F (C’)gﬁ@). As mentioned above, the resulting functions combine

to give all of the values of f ; however, the values are not necessarily in the
order specified for A. Instead, the functions are indexed by 7(B) x C, and a
permutation similar to the one in Step (1) is required so that the resulting
function is ordered corresponding to the order of A.



The Fourier transform F'(A) is a linear transformation from L?(A) onto
L2(A). As soon as the elements of A and A are ordered, the linear computa-
tion can be written as a matrix. The above algorithm can be summarized by
the following matrix factorization. The matrix factorization uses the notation
1, @ M, where I, is the n x n identity matrix, and I,, ® M denotes the direct
sum of n copies of the matrix M. The symbol @ denotes the tensor product
(also called the Kronecker product), and in general, if A is an m X n matrix
and B is a p X ¢ matrix then A® B is the mp x ng block matrix obtained by
replacing a;; by the matrix a;; B for 0 <i <m and 0 < j < n (see [16]). In
addition, the permutation L™ :in+j — jm+i, 0 <i<m,0< 5 <n, will
be used. This permutation, called a stride permutation, gathers the elements
of a vector of size mn into n segments of m elements. The elements of each
segment are gathered at stride n, and the i-th segment begins with the i-th
element of the input vector.

Corollary 3.2 Let B < A, C = A/B, C = B+, B = A/C’ E:C — A
be a choice of coset representalives for A/B, and n: B — A be a choice
of coset representatives for A/C', Let P(§) be the permutation that reorders
the A corresponding to §(C) x B, Q(7) be the permutation that reorders A
corresponding N(B) x C'. Let T(1),£)(a,a) = (£(c),N(b), where a = &(c) + b
and a = 1n(b) + ¢. Then
T(9,€)(a, a) = B D), (b))
ccCbeB

and

o . A
F(A) = Q@) (I © F(C)) T, &) L) (o) @ F(B)) P(S).
The Cooley-Tukey algorithm has been described as a matrix factorization
by many authors (see the books by Van Loan [27] or Tolimieri, An and Lu 25,
26|) for a comprehensive survey. Corollary 3.2 provides a generalization of
many of these results.

4 Application to Multidimensional Fourier Trans-
forms

By the fundamental theorem of Abelian groups [17], any finite Abelian group
is isomorphic to a direct product of cyclic groups, and hence is isomorphic to
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Z/nmZ x - x L/n,Z, where Z/n;Z is the additive group of integers mod n.
Such an isomorphism is called a presentation. Choice of presentation is not
unique; however, it is possible to determine all possible presentations from
the prime power factorization of the orders of the cyclic factors of any given
presentation.

Suppose Z/mZ x --- X Z/n;Z is a presentation for A, and let a =
(a1,...,a;) and x = (z1,...,x;) be arbitrary elements in A. Define a — a
by

a(x) = ai(z1) - - ae(w),

where o
aj(z;) = e ™.
It is easy to verify that a € A and the mapping ¢ — a is an isomorphism
from A onto A.
Using this presentation and the corresponding isomorphism, the definition
of F'(A) becomes:

f@ = fla,... d)
— Z f(gjh ceey xt)egn—TmererQn—’fatxt‘

(21,eeey®t)

This is the standard definition of the t-dimensional Fourier transform of
ny X -+ X ng points, which we denote by Fi,, . »,).
In the application of Theorem 3.1 to the computation of Fi,, . .,), the

Abelian group A = Z/miZ X - x Z/n:Z and its dual A = Z/mZ x --- x
Z/n;Z. The algorithm in Corollary 3.2 can be applied as soon as the following
information has been obtained:

—_

. a basis for a subgroup B < A.
2. a set of coset representatives for C' = A/B.
3. a basis for B*.
4. a set of coset representatives for B = A /B*+.
A classification of all subgroups of a finite Abelian group is given in [7]. If

only a generating set is given for B, a basis can be algorithmically computed

10



using a constructive version of the fundamental theorem of Abelian groups
based on the Smith normal form of an integer matrix [17, 20]. A set of coset
representatives for Step 2 can be computed using an algorithm to compute
the Smith normal form of the relation matrix for A/B obtained by setting
the generators for B equal to zero. The Smith normal form computation of
the relation matrix determines a presentation for A/B.

The group B* can be computed by solving a system of linear equations
mod N, where N is the least common multiple of ny,...,n. If w, = eQnﬂ,
then (b,a) = 1 implies

biar | | btatil
ni ¢ -

W

which is true if and only if
biayN/ni + -+ -+ ba;N/my =0 (mod N).

Therefore, if {b,...,b,}, with b, = (b;1,...,b;), is a basis for B, then the
elements of B are the solutions, 0 < z; < n1,...0 < 2z < ng of the linear
system

bllN/n1Z'1+ s ‘|‘b1t33tN/nt =0 (IHOd N)
bilN/TLl.Z'1+ s +blt:€tN/nt =0 (mod N)
b N/nixi+ -+ +bgxN/ny =0 (mod N).

Once a basis has been computed for B coset representatives of 121/ Bt
can be computed in the same way that coset representatives for A/ B were
determined in Step (2).

5 Examples

In this section, Corollary 3.2 is applied to derive matrix factorizations for
several one-dimensional and two-dimensional Fourier transforms. These ex-
amples are first used to derive many of the existing algorithms as special
cases. Section 5.1 contains a derivation of the algorithm presented in the
paper of Cooley and Tukey [11] and the prime factor algorithm of Good and
Thomas [13]. Section 5.2 contains a derivation of the standard row column

11



algorithm and the vector-radix algorithm for computing multidimensional
Fourier transforms. Finally, Section 5.3 contains an example that can not
be derived using existing methods. This example best illustrates the general
techniques, described in Section 4, for using Corollary 3.2 to derive multidi-
mensional Fourier transform algorithms.

5.1 Cyclic Groups
Let A = Z/mnZ, B = {0,m,2m,...,(n — 1)m}. Then B = Z/nZ and

A/B >~ Z/mZ, and {0,1,...,m — 1} can be chosen as coset representatives
(ie. &(j) = j, for 0 < j < m). An element & € A = Z/mnZ is in B if
and only if w®* = 1. This in turn is true if and only if am =0 (mod mn).

Therefore, usmg the notation of Section 4, B~ = {0,7,2n,...,(m — 1)n},
which is isomorphic to Z/mZ. The quotient group A/ BL =~ Z/nZ, and
{0,1,...,n°— 1} can be chosen as coset representatives (i.e. (k) = k, for
0<k<n)).

With these choices, Theorem 3.1 is identical to the algorithm derived by
Cooley and Tukey (see the Introduction). Corollary 3.2, can be used to state
the resulting algorithm as a matrix factorization.

The permutations are P(§) = L™, Q(n) = L™, and L}g“ = L™ and

since (£(5), (k) = (j, k) = wik,,

T(H — D Do), (b)) EB EB Wik —
ccCbcB 7=0 k=0
With these choices Corollary 3.2 becomes
Fo = L7 (1, @ F,) T L (1L, @ F,) L. (13)

See [18] or either of the books [25, 27] for alternative derivations of this
matrix factorization.

If we assume that m and n are relatively prime, it is possible to chose coset
representatives so that all of the twiddle factors are equal to one. Since m
and n are relatively prime there exist integers A and y such that Am—+un = 1.
If we set e,, = un and e, = An then we observe that

em=1 (modm) ¢e,=0 (modn)

e, =0 (modm) e,=1 (modn).

12



Consequently, e,, and e, are a pair of complementary orthogonal idempotents
for Z/mnZ, ie., €2 = e, €2 = ¢e,, eme, = 0, and e,, + ¢, = 1.

Since ee, =0 (mod mn), (€m, €,) = wim™ = 1, and therefore choosing
¢(j) = jen and n(k) = ké,, causes T(1,£) = Lnn. Let P(m,n) = P(§) :
im -+ jen, — jn+i4,0 <i<n,0< jm, and P(n,m) = Q(7) :in+ je, —
jm~+1,0 <i < m,0 < jn, then Corollary 3.2 implies

Fr = P(n,m) (1, ® F,) L™ (1, @ F,)P(m,n). (14)

5.2 Coherent Presentations

Given a presentation for an Abelian group, A, a subgroup is coherent with
respect to the presentation if it has a basis whose elements are multiples of
the basis elements in the presentation of A.

A special case of a coherent subgroup is obtained when the subgroup is
equal to one of the summands in the presentation of A. For example, let
A =Z/mZ x Z/nyZ and let B = {(j,0)] 0 < j < ny}. Then B >~ Z/n,Z,
AJB > Z/n,Z, B- = {(0,k)|0 < k < ny} =~ Z/noZ, and A/B+ ~ Z/n,Z.
In this example we may choose {(0, k)| 0 <k < na} as coset representatives
for A/B, and {(7,0)] 0 < j < m} as coset representatives for A/B*.

Assuming that A and A are ordered lexicographically then in this exam-

ple, P(f) Ln1n27 Q( ) - nmza T(ﬁ, f) - [nmza and
F(nl,ng) — ([nl @ Fnz)LZTQ ([nz @ Fnl)LZ;nQ' (15>

The general case of a coherent subgroup can be illustrated with the fol-
lowing example. If A = Z/min1Z x Z/mansZ then B = {(jim1, joms)| 0 <
j1 < ni, 0<js<ng} is coherent.

B> Z/nZxZ/nyZ and A/ B = Z/m,Z xZ/myZ. Moreover, {(j,k)| 0
j < my,0 <k < my} can be chosen as coset representatives (i.e. £(j, k)
(4, k). o

Bt = {(kml,kgng) 0 <k <my, 0<ky< my}, which is isomorphic
to Z/myZ X Z/nyZ. A)B- = Z/nZ x Z/nyZ, and {(] k)| 0<j<m,0<
k < ns} can be chosen as coset representatives (i.e. 1(j, k) = (J,k)).

Assuming A and A along with B and B~ and the coset representatives for
A/B and A/B* are ordered lexicographically. P(£) = P is the permutation
that gathers mims submatrices of dimension n; X ny. The elements of each
submatrix are gathered at stride ms along the rows and stride m; along

I IA
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the columns. Q(7) = @ is a similar block permutation. The twiddle factor
T ="T(n,€) is defined by

<(j17 kl)v (527 EQ» - wﬁ{%1w?ﬁl§32

for 0 < 77 <m1,0 < k; <ny,0< jo <meo,0 < ky < ng. Corollary 3.2 then
implies the following factorization:

F(m1n1,m2n2) - Qil([mng @ F(m1,m2)>TLZL117glm2n2 ([m1m2 @ F(n1,n2)>P' (16>

This is a variant of the vector radix algorithm mentioned in the introduction.

In the special case when m; = ny; and my = ny then P = (), therefore the
only essential permutation (conjugating by P just corresponds to relabeling
the data) is the stride permutation in the middle. Comparing this to the
algorithm in Equation 15 we see that, at the cost of T, we have eliminated
one of the runtime permutations L7,

5.3 Incoherent Presentations

Given a subgroup B < A it is not always possible to choose a presentation for
A such that B is coherent with respect to that presentation. The following
example from exercise 5 in Chapter 3 of “The Theory of Groups” by M.
Hall [14] illustrates this situation. Let A = Z/p*Z x Z/pZ, where p is a
prime number, and let B be the cyclic subgroup of order p? generated by
= (p,1). Then the following calculation shows that A/B is isomorphic to
Z/p*Z. Clearly, if there were a presentation of A relative to which B were
coherent, then A/B would be isomorphic to Z/pZ x Z/pZ.

Indeed, arelation matrix R for A/ B is obtained by adjoining the generator
for B to the relations for A.

3

p° 0
R=| 0 p
p 1

Since the first row is equal to p? times the third row minus p times the
second row it is a redundant relation. The resulting relations can be uni-
modularly transformed (i.e. by pre or post multiplying by integer matrices
whose determinant is plus or minus one) into a diagonal matrix.

() era () (0 ) (1)

14



The column operations corresponding to ) require the linear change of vari-
ables on the basis of A: (p,1) — (p,1) and (0,1) — p(p,1) + (0,1) =
(p%,p + 1). From this calculation we conclude that A/B =~ Z/p?Z and
{j(p,1)|0 < j < p?} can be chosen as coset representatives.

Since Bt = A//\B, B is cyclic of order p?. An element (&,9) € A is in
Bt if and only if

wizws =1 < pz +p*y=0 (mod p?).

It is easy to verify that (p® — p, 1) is a solution, and moreover, it is a cyclic
generator for all of the solutions (the order of (p? — p, 1) is p? since p(p? —
p.1) #0). )

Another unimodular diagonalization shows that {k(p, 1)|0 < k < p*} can
be chosen as coset representatives for A/B*.

The permutation P(§) = Q(1)) = P is the permutation j(p + 1) + k —
k* p? + j. The twiddle factor, T = T'(5, ) is defined by

~

(i, 1), k(p. 1)) = it
and Corollary 3.2 implies the following factorization.

- 4
Fippgy = P (I @ )T LR (L @ ) P. (17)

p3,p)

6 Implementation Considerations

In this section, we outline some of the potential benefits of the results pre-
sented in this paper for implementing multidimensional Fourier transforms.
The goal of the implementer is to construct a program to efficiently eval-
uate the linear computation
y = Fu,

where I is generally a one, two, or three dimensional Fourier transform. The
approach we have suggested, is to apply repeatedly the construction in Corol-
lary 3.2 to factor F' into small Fourier transforms that we may assume are
efficiently implemented. Along the way we will pick up tensor products, diag-
onal multiplications (twiddle factors), and, most importantly, permutations.
The code for each of the resulting factors can be combined to give a program

15



for the computation. The resulting formula can also be algebraically ma-
nipulated to produce many different algorithms with different performance
characteristics. For a detailed discussion of how this code can be generated
see [18] and [19].

One of the main features of this paper is to show how, possibly at the
cost of non-standard twiddle factors, the class of resulting permutations may
be enlarged from the standard approach. The performance bottleneck for
implementations of the FF'T for large data sets on modern computer archi-
tectures is the data flow [5|. These new permutations may enable us to find
better implementations of the Fourier transform. This is especially true in
the multidimensional case. To see why this is true, consider the choices the
programmer has in applying the factorization procedure. In one dimension,
the presentation of B < A and hence, A/B is essentially unique. This is be-
cause of the fact that a cyclic group has a unique subgroup of a given order.
So in one dimension, once the size of the smaller Fourier transform is fixed,
the only free choice is the set of coset representatives. In two dimensions,
the situation is considerably more complex and fruitful. Given A there are
many non-isomorphic B’s to choose of a given size. Furthermore, even if
we choose isomorphic B’s it can happen that the resulting quotients C’s are
not isomorphic. This together with the choice of coset representatives, gives
the algorithm designer considerable flexibility in matching an algorithm to a
specific machine to obtain a high performance implementation.

We report the results of an experiment we conducted which suggest that
these ideas may have a practical value in implementing multidimensional
Fourier transforms. Consider the problem of implementing a square two-
dimensional Fourier transform Fiy n with N = 2", Typically an algorithm
based on Equation 15 is used. In this case the resulting factorization is

y = (In © FN)LN (In @ Fy) LN @

where the load-stride at stride /V, L%Q, corresponds to matrix transposition.
This approach is called the row-column algorithm. Assuming that the ini-
tial data is stored in a matrix which is in row-major order, the algorithm
converts the data to column-major order, applies Fy to the N columns of
data, transposes the intermediate result back to row-major order, and then
applies Fiv to the N rows of intermediate data. Presuming that an efficient
implementation of Iy is available, this reduces the problem to finding an
efficient implementation of transposition.

16



Stride s Time (secs)
1 (copy) 173
2 197
4 259
16 774
64 2819
4096 (transposition) >72000

Table 1: Wall clock timings of Load-Stride.

On machines with a hierarchical or distributed memory the behavior of
load-stride permutations for large data sizes varies with the stride. Our test
machine was a Sun Sparc 10 model 41 running under Solaris 1.0 with the
following memory hierarchy

16 — KB on-chip cache
1—MB on-board cache
64 —MB  main memory
400 — MB swapfile

For complex data (8 bytes per point) we obtained wall-clock timings for a
straight forward implementation of y < L§24:U. These are shown in Table 1.
Thus, our row-column evaluation of [z 512 takes more than 72,000 seconds!

One approach to handling the situation is to use a multipass algorithm to
do the transposition [21]. In fact, a simple one would be to do Li% six times
based on the factorization L7$* = L7 L7s*. However, the following observa-
tions suggest a faster implementation might be obtained by the methods we
have developed in this paper.

Instead of building Fiy x from one-dimensional transforms, we can use,
for example, Equation 16 to build Fiy n from smaller two-dimensional trans-
forms. In this case we have

y=QU:® F(N/2,N/2)>TL4]1VQ (In/a @ Flag))P,
where P and @ are block permutations. Now for N = 22* we have

Yy = Q([4 ® F(2117211))TL42124 ([222 ® F(272)>P.
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Factor Time (secs)
Q 437
I ® F(2117211) 198
T 259
Iy @ F(272) 185
P 399

Table 2: Wall clock timings of 2-dimensional Cooley-Tukey.

For this case we have obtained timings shown in Table 2. Reference to
the table shows that this two-dimensional Cooley-Tukey algorithm costs at
worst about 1500 seconds which is very much less than a straight-forward
row-column evaluation at more than 72,000 seconds.

This experiment was only a test of quick and dirty code, but we believe
it strongly suggests that the methods developed in this paper warrant fur-
ther practical study. The wide variety of new data flows introduced by the
factorization procedure we have developed in this paper may have an im-
plementation advantage over those of traditional multidimensional FF1’s on
modern computer architectures.
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