
A New Perspective on Predicting Maintenance Costs

Florian Uunk∗, Rick Kazman†, Yuanfang Cai‡, Noah Black‡, Carlos Andrade§ Giuseppe Valetto‡, Lu Xiao‡ and Fetsje Bijma∗
∗ VU University Amsterdam

† Software Engineering Institute, Carnegie-Mellon University, and University of Hawaii
‡ Drexel University

§ Federal University of Bahia

Abstract—In this paper, we present a new approach to
correlating file metrics to maintenance effort. We examine the
correlations between variations in file metrics and variations
in the maintenance effort spent on these files over multiple
releases. Because effort data is seldom accurately collected, and
is never collected for open source projects, we have employed
three novel, broadened and more holistic measures of file-
level maintenance effort: the number of lines of code changed
to resolve tasks (churn), the amount of discussion that tasks
generated (discussions), and the number of atomic changes
made to a file to resolve a task (actions). From the data
extracted from multiple Apache projects, we found that a
small subset of file metrics were significantly correlated to
our effort measures, especially to code churn and actions. The
best correlations vary from project to project, suggesting that
maintenance effort measurements should be project-specific.

Keywords-metrics; maintenance effort; architectural com-
plexity; coupling;

I. INTRODUCTION

Estimating the duration, effort, cost and complexity of
software development activities is of vital importance for
IT management, but notoriously challenging to do well.
Molukken and Jorgensen’s review [1] showed that 60-80%
of all software projects run over budget by 33% on average.
More than half of the total development effort in software
projects is spent on the maintenance phase [2]. During the
maintenance phase, software tends to age [3] and the code
base gets cluttered by an accumulation of changes, often
referred to as technical debt1. When technical debt is not
addressed, further development will be hindered. One major
way to address technical debt is code (re-)modularization
through refactoring.

If decision-makers (e.g. project managers) do not have
good insight into the benefits of refactoring, it is difficult to
know when to refactor, if at all. Numerous prediction models
have been proposed recently to identify components that
are error-prone [4]–[6], or to predict project development
cost and effort [7], [8]. But this existing work does not
directly support a project’s decision–makers in answering
the following question: when is it worthwhile to refactor
the software to reduce the complexity and make it better
modularized?

1http://www.martinfowler.com/bliki/TechnicalDebt.html

While the costs of modularization activities such as
refactoring are significant and immediate, their benefits
are largely invisible, intangible and long-term. It has been
known for decades that modularity decay can cause substan-
tial problems in projects, such as reduced ability to provide
new functionality and fix bugs, operational failures, and, in
the extreme, canceled projects. But there is no established
quantitative association between modularity variation and
maintenance effort variation. That is to say, there is no
way for a decision-maker to know, with confidence, if a
project’s modularity gets worse (or better) how much more
(or less) it will cost to maintain and extend. Without such a
foundation, it is difficult to predict the costs of the technical
debt incurred from a deterioration in a project’s modularity.
And it is equally difficult for decision-makers to justify the
potential cost-savings from a proposed refactoring activity.

Our research aims to provide an empirical foundation
upon which sound refactoring decisions may be based, by
relating variation in the complexity of code to variation in
effort—and hence cost. As a first step in that direction, we
test the following primary hypothesis:

There is a statistically significant correlation be-
tween software complexity variation over succes-
sive releases of software project files, and the
variation of effort required to maintain those files.

If this hypothesis is true, then it becomes possible to
understand how the maintenance effort for a code unit, such
as a file, varies with changes in one or more source file
metrics that characterize its complexity and modularization,
which we can easily capture and track. That, in turn, makes
it possible to predict the future maintenance costs of that file.
This information can then be used to make economics-driven
decisions about software maintenance, including refactoring.
To test this hypothesis, we need to measure how structural
relations in a file change over time on one hand, and how
maintenance effort spent on that file changes on the other.

Our first step in addressing this hypothesis is to select a
suite of suitable file metrics. Numerous source code metrics
have been proposed and studied, but not all of them have a
proven correlation with maintenance costs. We conducted
a literature survey and identified a set of metrics that

have validated relationships to maintainability, with solid
theoretical and empirical bases.

The second step is to select a suitable measurement of
effort at the file level. Although effort at the project or
task level is usually measured using person-months, there
is no widely agreed-upon effort measurement at the file
level. Maintenance effort spent on a file can be measured
in multiple ways. Just measuring changes in the number of
lines of code–the most obvious measure–may be misleading.
For example, if the change is inherently difficult, even
adding just a few lines of code may require a great deal
of effort, in the form of intensive discussions within the
project team, or multiple trial-and-error rounds leading to
several revisions.

We thus employ a new, and we believe, more holistic
approach to measuring effort, from three dimensions: the
number of lines of code changed to resolve tasks (churn),
the amount of discussion that tasks generated (discussions),
and the number of atomic changes made to a file to resolve
a change request (actions).

Employing our selected file metrics and new effort mea-
sures, we have developed a new empirical approach to cor-
relating file metrics variation to the variation of maintenance
effort on a file. Using these techniques, we investigate the
following research questions to test the primary hypothesis:

Q1: Which file-level code metrics are significantly corre-
lated to which types of maintenance effort?
The answer to this question will help us understand which
code metrics best track the increase or decrease of mainte-
nance effort. We will examine the selected metrics and their
correlation to the maintenance effort measures on a per-file
basis, using statistical models.

Q2: Does the correlation between file-level code metrics
and maintenance effort differ between projects?
The answer to this question will help us understand which
metrics to use to make predictions for a variety of different
projects, or if the types of maintenance effort that are best
correlated with file metrics are mostly project-specific.

While testing these hypotheses is of interest to most
software projects, few industrial projects are willing to
contribute the data needed to answer the question with
authority. We have therefore selected five Apache open
source projects containing between 8 and 18 releases as
our experimental subjects. For each file of each project,
we calculated its structural properties using the selected file
metrics, and computed the delta of each metric between
subsequent releases. We also extracted maintenance effort
for each file, and their deltas between releases. After that,
we analyzed the correlation between pairs of code metrics
deltas and effort measure deltas. We are interested to know
whether changes in code metrics are strongly correlated with
changes in effort measures.

Our results demonstrated that there are strong and signif-
icant correlations between a small subset of the selected file

metrics and two of the three maintenance effort measures:
the number of actions and the number of code churns.
This result is confirmed across all the five subject projects.
Furthermore we observed that, when each project is con-
sidered separately, the most significantly correlated metrics-
effort pairs differ, and in certain projects, the amount of
discussion also shows strong and significant correlations. We
also observed that the significance of the correlation between
metrics and effort increases in later releases. These results
provide a positive answer to the hypothesis, showing that it is
possible to quantitatively predict maintenance effort changes
from code-level file metrics, and that the best measures and
metrics may be project-specific.

II. RELATED WORK

As previously stated, our research aims to advance the
way maintenance effort is measured, and the way source
code metrics and maintenance effort are correlated. To
situate our contribution we will first review prior research on
code metrics and then examine the research on correlating
these metrics to maintenance effort. Finally, we discuss how
our approach differs from prior work.

A. Research on metrics

Published source code metrics can be broadly divided into
5 categories, based on what they measure: size, complexity,
coupling, cohesion, and inheritance. We will give a brief
description of each category, along with some of the most
influential publications on source code metrics.

1) Size: Size is the most straightforward metric for source
code. The number of lines of code (LOC) is the most
obvious and simplest way of measuring size. But it has its
drawbacks. For example, it is always possible to write the
same functionality with fewer (or more) lines of code, while
maintaining similar complexity. To address this problem,
several other metrics have been proposed.

2) Complexity: Measures of the complexity of a source
file are postulated to affect modifiability and maintainability:
lower complexity is better. Examples of complexity metrics
are Halstead Volume [9]—based on operator and operand
counts, and McCabe Complexity [10]—based on the number
of possible paths in program control graph.

3) Coupling: Coupling describes the number of connec-
tions a file or class has to other files or other classes. The
assumption is that lower coupling is better. Briand et al.
proposed a set of metrics that measure different possible
versions of class-to-class coupling [11]. Another coupling
metric is Propagation Cost, which was first introduced by
MacCormack et al. in 2006 [12].

4) Cohesion: Cohesion measures how strongly the re-
sponsibilities within a code unit are related. The rationale
behind measuring cohesion is the belief that code units, such
as source files or classes, should focus on just one thing, and
that doing so will improve maintainability.

5) Inheritance: Inheritance-based metrics only apply to
object-oriented code. Less complex inheritance hierarchies
are expected to be easier to understand and maintain.

Chidamber and Kemerer [13] (henceforth C&K) devel-
oped the best known metrics suite aimed at measuring
object-oriented source code, including metrics for coupling,
cohesion and inheritance.

B. Research on metrics and maintenance effort

A number of papers have attempted to correlate source
code metrics to maintenance effort. However, there is no
generally agreed-upon method to predict maintenance effort
at the level of a source code file. We now describe a number
of the approaches that have been attempted.

1) Comparing against expert judgement: Welker et al.
[14] proposed a polynomial that uses complexity based
metrics to predict maintenance effort. The weights for each
of these metrics are automatically fitted, so the polynomial
matches data of expert judgement in 8 systems. They pre-
sented this polynomial as the Maintainability Index.

2) Comparing against Maintainability Index: Misra [15]
and Zhou and Xu [16] compared a list of complexity and
inheritance metrics against the Maintainability Index at the
system level. Both papers found significant correlations to
both inheritance and complexity.

3) Comparing in controlled experiments: Harrison et
al. [17] compared metrics against both expert judgement
and maintenance measurements obtained in a controlled
experiment. They found that both complexity and cohesion
correlated with their maintenance measures, and that com-
plexity correlated with the expert judgement of a system.

Arisholm [18] looked at 10 changes made to an industrial
system and logged hours spent on each task. He found no
correlation between source code metrics and effort, possibly
due to the small size of the data set.

4) Comparing against change: Li and Henry [19] linked
a set of metrics to the total volume of changes to classes in
two different projects. They found significant correlations
for complexity, coupling, cohesion and inheritance metrics.
Binkley and Schach [20] looked at change volume of an
industrial system. They positively correlated this to coupling
and complexity metrics and to one inheritance metric. Ware
et al. [21] looked at the number of changes and the number
of lines changed for files in a commercial application. They
found significant correlations for complexity and coupling
measures.

In a slightly different vein, Anbalagam and Vouk [22]
found a significant correlation between the number of par-
ticipants in a bug report and the time taken to complete it.
While this is not an effort measure, it is certainly related to
the organizational dimension of a software project and the
corresponding effort overhead.

5) Comparing over releases: Demeyer and Ducasse [23]
attempted to identify problem areas in the source code of a
project and check if those problem areas were refactored in
later releases. They did not find such a pattern, but they noted
that the project they studied was in substantially good shape,
so there might not have been a major need for refactoring.
Alshayeb and Li [24] attempted to correlate a polynomial,
consisting of complexity, coupling, and inheritance metrics,
to maintenance effort in iterative projects. They measured
lines of code added, deleted and changed, first between
releases of a project, then between changes within a release.
They found that their constructed polynomial was reasonably
good at predicting effort between changes, but not as good
at predicting effort between releases.

C. Differences in our approach

Our research is different from earlier research as follows:
First, instead of simply comparing file-based code metrics
to maintenance effort, we compare an increase or decrease
in file metrics to an increase or decrease in maintenance
effort. This is intended to give us a more accurate insight
into the effect of source code variations across the lifetime of
a project. If there is a clear correlation between a change in
a metric value and a change in a maintainability measure,
a project manager will be able to use this knowledge to
make informed decisions about maintenance and refactoring
opportunities. Although D’Ambros et al. [25] also employed
variations of source code metrics, they used them to predict
defects. Our research is the first to correlate variations of
file-level code metrics to maintenance effort.

Second, instead of measuring maintenance effort merely
using the number of changes in lines of code (churn), we
add two new measurements: the number of actions—atomic
changes to resolve an issue—and the amount of discussion
among developers for an issue. This gives us a more holistic,
multi-dimensional view of maintenance effort, assuming that
a complex change will require more discussion and more
changes to files (since some of the initial changes will not be
correct and will necessitate subsequent rounds of changes).

Third, only Alshayeb and Li [24] have also looked at the
relation between metrics and maintenance effort over multi-
ple releases, but instead of comparing variations in metrics
over different releases to variations in maintenance effort,
they created a formula to predict maintenance effort from
source code metrics, and tested the formula over various
releases and changes on the project. They examined only
13 changes in total, whereas we are looking at thousands of
changes. While other researchers have leveraged code churn
to predict project effort [7] and defect density [4], we are
the first to investigate the correlation between file metrics
and code churn, which is a manifestation of effort at the
file level. We will discuss more about our choice of effort
measures, including threats to their validity, in Section VI.

III. METHODOLOGY

In this section we describe the subject projects that we
have studied, the set of measures we chose to collect from
these projects, the rationale behind these choices, and our
data collection methods.

A. The subject projects

The selection of projects is important to the quality of the
data, and therefore to the validity of the research. Now we
describe the criteria we used to select the projects for this
research, and the motivation behind those criteria.

1) Criteria: To ensure the generality of our research, we
attempted to obtain a diverse set of projects. We specifically
looked for heterogeneity along the following dimensions:

Variation in domain of software: Uses of software can
be categorized into various application domains. We tried
to find projects from distinct domains to ensure that our
research results would apply generically.

Variation in source code sizes: Even though Dolado
[27] has shown that development productivity does not
vary significantly across project sizes, maintaining a large-
scale software project is still, in practice, different from
maintaining a small scale software project.

Variation in team size: There has been considerable
research on the effects of team size on development speed.
Brooks argues that smaller teams tend to have greater
productivity per person [26], but many have argued that
larger teams are better for productivity and quality in Open
Source Software.

Variation in project age: The age of a body of software
can influence developer productivity in ways that may not
be measurable by source code metrics. For example, the
technology chosen (language of implementation, operating
system, development libraries, etc.) can cease to be sup-
ported, and key developers can leave the project, resulting
in a knowledge loss.

We have, however, restricted our attention to projects
written in Java, so that we could repeat the same metrics
extraction process for our entire set of projects. Furthermore,
we only selected projects that use a version control system
and a bug tracking system, as our maintenance data is
derived from these systems. The projects selected all contain
source code and maintenance data for at least 8 releases, and
all have more than 300 resolved issues in their bug tracking
systems.

2) Selected projects: We have summarized the project
characteristics, the first and last release for which we have
extracted data, and the number of resolved or closed issues
that we were able to extract in table I. As we can see from

the table, Derby2, Lucene3, PDFBox4, Ivy5, and FtpServer6

are from different domains, with different team sizes and
different project ages. The number of resolved issues ranges
from 329 to 3058.

B. The selected metrics

In this section, we discuss the metrics that were calculated
for each file of each project.

1) Criteria: As described in section II, numerous metrics
(summarized in [28], [29]) have been proposed that are
purported to predict software quality and maintenance effort.
Unfortunately, testing all these metrics for their power in
predicting maintenance effort was infeasible. To select a
smaller target set of metrics to analyze, we applied 3 criteria.

The metric is widely applicable: Since we are restrict-
ing our research to projects written in Java, the metrics will
have to be applicable at least to this language.

The metric is defined at the file level: The unit of
analysis in our research is the source file, so the metric has
to be interpretable at the file level. We do, however, employ
metrics that are defined at the class level. To account for
this discrepancy we only consider files that contain a single
class. This constraint only eliminates around 7% of the total
files from our candidate data set.

The metric has been consistently proven in previous
research: To keep the scope of the research manageable,
we chose only metrics that have been consistently shown to
be correlated with maintenance effort in previous studies.

2) Selected metrics: We have selected the following
metrics:

Source Lines of Code (LOC): The total lines of code in
the file. The idea behind this metric is that, all other things
being equal, larger files are harder to maintain.

Weighted Method Complexity (WMC): The sum of the
complexities of the methods in a class.

Response For a Class (RFC): Total number of methods
that may be invoked as a result of a invoking any method
in a class.

Coupling Between Objects (CBO): The number of
other classes that the class in this file is connected to.

Lack of Cohesion Of Methods (LCOM): The number
of method pairs in the class in this file that do not share the
usage of a single attribute of the class.

Depth in Tree (DIT): The number of classes that are a
superclass of the class in this file.

Number of Children (NOC): The number of classes that
have the class in this file as a superclass.

Afferent Couplings (Ca): A measure of how many other
classes use the specific class in this file.

2http://db.apache.org/derby/
3http://lucene.apache.org/core/
4http://pdfbox.apache.org/
5http://ant.apache.org/ivy/
6http://mina.apache.org/ftpserver/

Table I
SELECTED PROJECTS

Project Releases Resolved Issues Contributers First Release Last Release Domain

Derby 18 3058 458 2005/08 (10.1.1.0) 2011/10 (10.8.2.2) Relational Database

Lucene 18 2444 652 2006/03 (1.9.1) 2010/12 (3.0.3) Distributed search

PDFBox 8 699 387 2010/02 (1.0.0) 2011/07 (1.6.0) PDF document manipulation tool

Ivy 12 758 408 2006/11 (1.4.1) 2010/10 (2.2.0) Transitive relation dependency manager

FtpServer 10 329 112 2007/02 (1.0.0-M1) 2011/07 (1.0.6) Java-based FTP server

Number of Public Methods (NPM): The number of
methods in a class that are declared as public.

WMC, RFC, CBO and LCOM, DIT and NOC have all
been described by C&K in 1994 [13]. We have altered their
definitions slightly to make them meaningful at the file level,
as described in section III-B1. The C&K suite has been
studied heavily, and its metrics have been validated in many
studies (e.g. [15], [17], [19]–[21]).

In addition to the extended set of C&K metrics, we have
selected one more metric—Propagation Cost, which aims to
capture architectural complexity.

Propagation cost (PC): PC, first introduced by MacCor-
mack et al. in 2006 [12], is a coupling-based metric, and
there has been some promising research on the predictive
power of PC on maintenance effort [12], [30].

PC is based on a visibility matrix [12], which is a binary
matrix where a project’s files are the rows and columns,
and dependencies between the files are the values. These
dependency values are determined using a path length L,
which allows a file A to be dependent on a file B through
a dependency chain of length L. For example, a path of
length of 1 denotes traditional coupling, since only direct
dependencies are represented in the matrix. The propagation
cost is computed as the sum of all dependencies in the
visibility matrix, divided by the total possible dependencies.

However, propagation cost calculated that way is de-
fined at the project level. Instead, we compute incoming
propagation cost at the file level, by taking the sum of
the incoming dependencies for a file, divided by the total
possible dependencies; concretely, this means that we take
the sum of the column in the visibility matrix that represents
the file, and divide this value by the length of the column.
Analogously, to calculate outgoing propagation cost per file,
we take the sum of the row in the visibility matrix that
represents the file, and divide that by the length of the row.
This approach is a slight variation on the work of Ferneley
[31] and Yang and Tempero [32] who have found promising
results.

We have also introduced a new variant of the propagation
cost metric that employs a decay rate. With this decay rate,
we reduce the strength of indirect dependencies by a factor
for each additional step in the dependency chain. In the
present study, we applied a decay rate factor of 0.1.

In this research, we have investigated both incoming and

Release

File

Issue

CommitPatch

Action

*

*1

*

1 *

1 1
* *

**
1 1

Figure 1. The data model

outgoing propagation costs with path lengths of 1, 3, 5, 10,
and 20 – with and without decay – to see which variant of the
propagation cost metric has the most predictive power. When
describing our results, we will use a naming convention; for
example, PROP-OUT-10-N indicates outgoing propagation
cost with path length 10 and without decay, whereas PROP-
IN-5-D indicates incoming propagation cost with path length
5 and with decay.

Considering all combinations, we have a total of 18
propagation cost metrics (not 20, since when path length
is 1 the decaying and non-decaying version of the metrics
are the same).

The 18 propagation cost metrics, plus LOC and the 8
C&K metrics, give us a grand total of 27 metrics that we
calculate for each file of each release of each project.

C. The data collection method

The data model used in our data extraction and analysis
procedure is illustrated in Figure 1.

For each project, we study a number of releases, each of
which have a set of files. Each project also has a list of
issues, which are extracted from the project’s bug- or issue-
tracking software. Issues consist of both bug reports and
change requests. Developers can submit patches to suggest
a solution to an issue. Patches consist of a list of actions,
which are changes to files that were made to resolve the
issue. For each action, we measure code churn as the number
of lines of code added and removed, where changed lines
count as both added and removed. Each action corresponds
to a change done in 1 file for 1 issue, but issues are often
resolved using multiple actions. The patches that finally get
accepted (i.e., that resolve the issue) are called commits.

Developers can also associate comments with issues. These
comments are used for communication between developers.

1) Extracting the data: We populated our data model by
extracting data from the bug tracking system and version
control repositories for each project. Since our 5 projects
were all maintained by the Apache foundation, the same
technologies were used. The bug tracking system in use
is Jira7, which has a WSDL API that is usable for data
extraction. Their version control system is Subversion8. We
constructed a number of tools that query both systems for
the data, format it, and insert it into our database based on
our data model.

2) Compiling code metrics: We used 3 different programs
to calculate file metrics. To calculate the source Lines of
Code (LOC), we used the utility SLOCCount9. This gives
us the number of lines of code in the file. For the extended
set of C&K metrics, we used ckjm 1.910. For the propagation
cost based metrics, we wrote our own tool, which first
generates a Dependency Structure Matrix (DSM) [12], from
which we can count the number of incoming and outgoing
dependencies per file over various path lengths.

For each release, we took a snapshot of the code base from
the version control system of the project. After extracting the
selected metrics per file per release from those snapshots, we
stored them in our database for analysis.

3) Measuring maintenance effort: Since we are looking
at open source projects, the developers did not log hours for
their maintenance work. To approximate maintenance effort,
we scrutinized our data set to see which proxy measures
for maintenance effort we could find. We settled on and
collected 3 file-based proxy measures.

Discussion: This is the amount of discussion that
occurred in resolving an issue. The assumption is that a
more complex change is likely to generate more discussion.
Concretely, we measure the number of comments that have
been made in the bug tracking system for an issue, and we
associate the numbers to the files modified to resolve that
issue.

Change in lines of code (Churn): Churn is the total
number of lines of code that were changed in the file to
resolve an issue. If a file is changed multiple times for the
same issue, we see if the file changes overlap to make sure
we don’t count the same changes multiple times.

Actions: We also measure the number of actions, as
described in section III-C, that were performed to resolve
an issue. Concretely, this counts the total number of patches
and commits that were needed to resolve an issue affecting
a file. The notion here is that the more complex the file,
the more likely it is that it would require a large number of
actions if something has to be changed in it.

7http://www.atlassian.com/software/jira/
8http://subversion.tigris.org/
9http://www.dwheeler.com/sloccount/
10http://www.spinellis.gr/sw/ckjm/

Table II
EXAMPLE DATA EXTRACTED FROM PROJECT FILES

File Rele- LOC actions Gro- Rel. Rel.
name ases up LOC actions

1 client.java 1.0 100 40 - - -

2 client.java 1.0 100 60 - - -

3 client.java 1.1 140 75 1 1.4 1.5

4 client.java 1.2 70 60 2 0.5 0.8

5 library.java 1.1 60 75 - - -

6 library.java 2.0 72 150 1 1.2 2.0

7 server.java 1.0 200 40 - - -

8 server.java 1.2 240 52 1 1.2 1.3

IV. STATISTICAL ANALYSIS

The methodology described in section III gives us a
data set consisting of code metrics and maintenance effort
measures for each release of each file. Since we want to
analyze the relationship between increasing or decreasing
code metrics and maintenance effort, we transform these
numbers so that they reflect the change in that value from
the previous release. To this end we take the metric value of
each file in a release, and divide it by the equivalent value in
the previous release. If the resulting quotient is less than 1,
it means the value has decreased; if it is greater than 1, it has
increased; if it equals 1, the value remains unchanged. We do
an analogous calculation for effort values: since the same file
can be involved in multiple issues for the same release, we
divide the effort measure for each issue in the new release by
the average effort measure per issue in the previous release.
These derived data points each represent the change in a
metrics or effort measure between two consecutive releases
of a given source file.

The calculation of relative values is exemplified in Table
II (please ignore the group column for now, which will
be explained in section IV-A). This table shows how the
relative values for one file metric, LOC, and one effort
measure, actions, are calculated. The relative LOC value of
“client.java” in row 3 (1.4) is the quotient of its current LOC
value (140) and its LOC value in the previous release (100).
We calculated relative effort values in a slightly different
way. This is because our effort measures are calculated on
a per-issue basis. For example, if “client.java” was changed
in release 1.0 to address two separate issues, it takes two
separate rows (Row 1 and 2 in Table II).

To calculate the relative actions value of “client.java” in
release 1.1 in row 3 (1.5), where “client.java” was involved
in two issues in the previous release, we divide its current
value (75) by the average of all previous actions values ((40
+ 60) / 2 = 50). The file “library.java” in row 5 and 6 has no
action data associated with it for release 1.0 or 1.2, so the
entry for release 1.1 is used as the first data point, and the
entry for release 2.0 as the second data point. We calculated

relative values in this manner for each file with all 27 x 3
= 81 metric-effort pairs.

A. Spearman analysis

Each line in Table II is considered as a data point. We thus
calculated the data points for each individual file of each
project as explained above, to understand the correlations
between code metric variation and effort measure variation.
Since the effort values do not follow a normal distribution,
we have used the Spearman rank correlation test.

However, Spearman assumes independent measurements
in the data set subject to the test. Since our data reflects
deltas of the same measurements over time for each file, we
cannot assume such independence, and we must not include
data points pertaining to the various releases of the same file
in the same data set.

We thus segment our data points into groups (see Table
II) according to the following procedure: we first skip all
data points which come from the first release we have on
record for a file, because without a previous release, we
cannot calculate meaningful relative values. After that, all
data points that belong to the second release of each file go
in group 1, all data points that belong to the third release of
a file go in group 2, etc. This means that data from different
releases of the same file never appear in the same group.
We can then apply the Spearman correlation test separately
to each group.

Once more, Table II shows an example of how the
segmentation of data into groups is done. Row 1 and 2
belong to the first release we have information for file
“client.java”. Because we use values that are relative to the
previous release, we can not use these values in our analysis.
Row 3 belongs to the second release of “client.java”, so it
goes into group 1. Row 4 belongs to the third release of
“client.java” that we have information for, so it goes into
group 2.

Row 5 contains the first release of “library.java” that we
have information for, thus it has no relative values. Please
note that release 1.1, which the data point for row 5 belongs
to, does not have to be the first release in which library.java
existed in the project; rather release 1.1 is the first release
where we have maintenance effort data for “library.java”.
Row 6 belongs to the second release of “library.java” that
we have information for, so it goes into group 1.

Row 7 is the first release of “server.java” that we have
information for, so we can not add it to a group. Row 8 is
the second release of “server.java” that we have information
for, so we add it to group 1. Please note that for row 8
(release 1.2), the relative values are not relative to a data
point from the previous release (1.1), but from two releases
before (1.0). This is because there is no effort data recorded
for server.java in release 1.1.

In our analysis we exclude issues that did not affect source
files. For a file to show up in at least one group, it must be

Table III
METRIC - EFFORT CORRELATION FOR AGGREGATED DATA SET

Group Metric Type Effort P Rho
3 CKJM - WMC actions 0.00045 0.3910
4 CKJM - RFC actions 0.00106 0.5158
4 raw LOC actions 0.00167 0.4425
4 CKJM - Ca actions 0.00180 0.3436
5 PROP-OUT-20-N churn 0.00293 0.6378
5 PROP-OUT-5-N churn 0.00899 0.5654
5 PROP-OUT-10-N churn 0.00294 0.6378
6 CKJM - CBO churn 0.00228 0.6694
6 PROP-OUT-1-N actions 0.00008 0.7586
6 CKJM - NPM actions 0.00006 0.7154

changed in more than one release. As a result, 2888 of the
total 9733 issues from all 5 projects were used to generate
usable data points.

We ended up having 9 groups from this aggregated data
set, each having 87,602, 47,028, 21,686, 9,614, 5,804, 3,167,
1,388, 374, and 348 data points respectively. Since groups
with higher numerical IDs will have an increasingly smaller
population of data points (that is, fewer files have that many
rounds of changes over releases), which is detrimental to
the accuracy and reliability of the statistical analysis, we
decided to only use groups 1 to 7.

In summary, each data point represents how one type of
maintenance effort and one type of file metrics of a file vary
over two successive releases where the file was changed.
Investigating all the groups will reveal how these two aspects
change together over multiple releases.

V. RESULTS

Since we have performed a Spearman analysis on a set
of 81 (27 x 3) code metric type versus maintenance effort
type pairs, over 9 different groupings of files, we have run
a total of 729 Spearman tests and therefore obtained 729 p
and rho values. Due to the large number of tests, we allow a
maximum p-value of 0.01 to ensure the significance of the
results. We thus obtained 17 significant correlations from
the aggregated data set. In addition, we performed the same
Spearman tests on each project. The five projects have 9
(Derby), 3 (FtpServer), 7 (Ivy), 8 (Lucene) and 4 (PdfBox)
groups, yielding over 2500 additional data points. To answer
the two research questions proposed in Section I, we report
significant results (p < 0.01) obtained from the aggregated
data set and from individual project data in Table III and
Table IV respectively.

Our research question Q1 asked which metrics are sig-
nificantly correlated to which types of maintenance effort.
To answer this question, in Table III, we list all significant
results (p < 0.01) with rho value of at least 0.3, obtained
from a sample size of at least 15. All of the top results
show a strong correlation with just two effort types: actions
and churn. In addition, it is interesting to note that 7 of the
top 10 results show a strong correlation with coupling-based

Table IV
METRIC - EFFORT CORRELATION FOR INDIVIDUAL PROJECTS

Project Grp Metric Type Effort P Rho
Derby 6 CKJM-NPM actions 0.00007 0.81
Derby 3 CKJM-WMC actions 0.00222 0.55
Derby 1 PROP-IN-20-N discussion 0.00001 0.30
Lucene 1 PROP-IN-5-N actions 0.00010 0.38
Lucene 1 PROP-IN-1-N actions 0.00022 0.38
Lucene 1 CKJM-Ca actions 0.00010 0.35
PDFBox 2 CKJM-LCOM discussion 0.00062 0.58
PDFBox 2 PROP-IN-1-N churn 0.00208 0.50
PDFBox 1 CKJM-RFC actions 0.00841 0.48
Ivy 3 CKJM-RFC churn 0.00031 0.71
Ivy 3 PROP-OUT-20-N churn 0.00157 0.46
Ivy 3 PROP-OUT-10-N churn 0.00157 0.46
FtpServer 1 PROP-IN-5-N actions 0.00741 0.50
FtpServer 1 PROP-IN-20-N actions 0.00910 0.49
FtpServer 1 PROP-IN-10-N actions 0.00910 0.49

metrics: 4 variants of PC and 3 C&K metrics (Ca, CBO, and
RFC).

The values in Table III are ordered in terms of their
group. It is encouraging that the rho value tends to increase
as the group number increases for two reasons. First, a
good predictive model should improve as you accumulate
more data. Second, the accuracy of a predictive measure of
maintainability, if it is a good measure, should increase over
time as maintenance concerns and technical debt accumulate
in a project. The idea is that: in the early stages of a project
there tends to be a low level of technical debt and so virtually
any structure of the software will not be overly problematic.
As technical debt accumulates, complexity concerns tend to
overwhelm a programmer’s cognitive abilities, and mainte-
nance costs go up. This is exactly what we can see from the
results presented in Table III.

In Table IV, we list the top 3 most significant results (p
< 0.01) with rho value of at least 0.3 and sample size of at
least 15, for each individual project. Our research question
Q2 asked whether these correlations would differ between
different projects. The project-by-project results shown in
Table IV suggest that this is indeed the case.

While actions and churn show up as important measures
in all 5 projects—highly correlated with the C&K and
PC metrics—discussion is highly correlated with PC in
Derby and with LCOM (Lack of Cohesion Of Methods) in
PDFBox. Similar to the results obtained from the aggregated
data set, coupling-based metrics are strongly correlated with
effort in 12 out of 15 cases.

VI. DISCUSSION

In this section, we discuss the results, threats to validity
and future work. Based on the analysis results presented
in the previous sections, we can now answer the research
questions proposed in Section I:

1) Which file-level code metrics are significantly corre-
lated to which types of maintenance effort?

LOC, several variants of PC as well as RFC, CBO,
WMC, NPM, and Ca have been shown to be signif-
icantly correlated to the maintenance effort measures
of actions and churn. Previous work has shown that
the 8 metrics from the C&K metric suite are good
predictors of maintenance effort [19], [20], [33]. Our
work supports these results and furthermore provides
empirical evidence that PC metrics are also good
predictors of effort.

2) Does the correlation between file-level code metrics
and maintenance effort differ between projects?
We found meaningful differences in the correlations
between metrics and measures in the different projects
that we studied. This is not surprising, since projects
have very different characteristics (e.g. size, age, do-
main, inherent complexity) as shown in Table I, as
well as very different styles of leadership and cultures.
For example, discussions are highly correlated with
complexity metrics in just 2 of the 5 projects we
studied: Derby and Lucene. This emphasizes the need
for a large and varied corpus of data on which to
base a predictive model of maintenance, since the
most effective metrics and measures may be project-
specific.

A. Threats to validity

Now we discuss possible threats to validity caused by the
choice of maintenance effort measures, the limitations of
data extraction, and the choice of projects to study.

We employed the three types of file-level effort measures
because developers in open source projects do not log their
hours for maintenance work. Even in industrial settings,
accurate effort logs are hard to obtain. Moreover, we need
maintenance effort at the file level, which is even harder
to obtain, if not impossible. We hypothesize that the three
measures (churns, actions, and discussions) can adequately
approximate the maintenance effort spent on a file. This
is, however, a hypothesis that is impossible to directly test
within our existing research framework.

We considered several other possible maintenance effort
proxies, such as the time used to resolve an issue, the number
of discussions by email or the number of defects. We chose
not to include them for the following reasons: The time
elapsed from a ticket was open until it was closed can
easily contain slack time that does not reflect the actual
effort. A ticket may, for example, remain open for a long
time because of its low priority rather than its inherent
difficulty. It is possible that discussions of an issue can
happen in developers’ mailing list. However, there is no
reliable and automatic way to link email discussions with the
files involved in the maintenance activities being discussed.
Bacchelli et al. [34] have made progress recently on the
linkage between email contents and source code. As part of
our further work, we would like to further strengthen our

results by including discussions in emails if such tools are
available and reliable.

There are many other works that use similar measures,
such as the number of changes [4], [6], to predict defects.
By contrast, the main focus of our work is the direct measure
of maintenance effort, in which defect fixing is only a part.
If a defect is fixed, then the fix is usually manifested as
changes in code, patches, commits, and discussions, which
will be captured by our three effort measures. These effort
measures can also capture the effort spent on other kinds of
maintenance activities. However, if an issue is not resolved,
our approach won’t count it as incurring any effort.

We have also assumed that all bugs/change requests
that were resolved between one release and the next were
attributable to the latest release. However, it is possible that
a few of the bugs or change requests actually applied to an
older release that is still being maintained. These bugs or
change requests are described as backports by Bachmann
et al. [35]. We also ignored files that had more than one
class defined in them. However, as we showed in section
III-B1, only 7% of the files are excluded for this reason.
Another threat to validity is that we only examined open
source projects. While we expect that similar results will be
obtained in industry projects, we cannot guarantee it.

Furthermore, we have only investigated 5 projects and
we only investigated a subset of the possible metrics that
we could have considered. For example, we could have
considered PC metrics with different path lengths and differ-
ent decay factors. A larger study employing more projects
and more metric types would improve the validity of our
conclusions.

B. Future work

In future work, we intend to flesh out this research frame-
work with data from more projects. We will also focus on
collecting data from commercial (non open source) projects,
including projects with logged hours for maintenance work.
These logged hours will also allow us to verify our current
assumptions about our proxy maintenance measures. We
will also explore more maintenance effort proxies in real
industrial settings when efforts in terms of logged hours are
not available. It is possible that our maintenance effort proxy
measures will correlate differently in industrial settings.

As mentioned above, there are many extraneous project
factors such as the inherent difficulty of bugs and issues,
and the inherent skill of the developers that add noise to
the data. Further study that controls for some of these noise
factors is thus called for. For example, we are already seeing
some promising results by categorizing change requests into
groups of small, medium, and large requests. This way, we
can see what the influence of source code metrics is on the
different sizes of changes, and eliminate the noise that this
variation in change size adds to the data.

We are also interested in further research on the corre-
lation of source code metrics to fault rates, using our new
framework, specifically to look at long-term reduction in
fault rates after refactoring, and the possible introduction of
faults during refactoring effort.

Another research topic could be on different variations
of the PC metric. An option is for example to test a set
of other decay factors than 0.10, and compare the results
against non-decaying PC.

Finally, when we have a balanced data set that contains
more maintenance cost measures and both open source
and industrial projects, we will work on constructing a
polynomial model that predicts maintenance cost based on
predicted values of source code metrics.

VII. CONCLUSION

In this paper, we have introduced a new set of proxy
measures of maintenance effort, including the amount of dis-
cussion, churn, and actions taken to resolve issues. We have
also introduced a new way of examining the relationships
between file-level code metrics and maintenance effort (and
hence cost) by investigating whether and how variations in
such metrics correlate with variations in maintenance effort.
From this study, we have identified a set of file-level source
code metrics that are strongly correlated with our proposed
measures of maintenance effort. Some of these metrics are
well-known and already empirically well-justified. Others–
principally the variants of propagation cost–have not been
broadly and empirically verified until now. We have also
shown that the best measures of a project’s complexity may
be project-specific, which underlines the need to have a large
corpus of projects and project characteristics, so that the
most appropriate metrics and measures can be selected for
estimation purposes.

The framework proposed in this paper has the potential
to help predict future maintenance cost based on changes
in source code metrics. The maintenance effort measures
proposed support our long term vision of explicitly esti-
mating the value of costly maintenance activities, such as
refactoring, that are currently hard to quantitatively justify.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants CCF-0916891, CCF-1065189 and
CCF-1116980.

Part of the work has been carried out as a Master thesis of
the VU University Amsterdam, in the context of the Double
Degree GSEEM Program on Global Software Engineering.

REFERENCES

[1] K. Molokken and M. Jorgensen, “A review of software
surveys on software effort estimation,” in Empirical Software
Engineering, 2003. ISESE 2003. Proceedings. 2003 Interna-
tional Symposium on, Sept. 2003, pp. 223 – 230.

[2] B. P. Lientz, “Issues in software maintenance,” ACM Comput.
Surv., vol. 15, pp. 271–278, Sept. 1983.

[3] D. Parnas, “Software aging,” in Software Engineering, 1994.
Proceedings. ICSE-16., 16th International Conference on,
May 1994, pp. 279 –287.

[4] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in Proceedings of
the 27th international conference on Software engineering,
ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp. 284–
292.

[5] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller,
“Predicting faults from cached history,” in Proceedings of the
29th international conference on Software Engineering, ser.
ICSE ’07, Washington, DC, USA, 2007, pp. 489–498.

[6] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09, Washington, DC,
USA, 2009, pp. 78–88.

[7] A. Mockus, D. M. Weiss, and P. Zhang, “Understanding and
predicting effort in software projects,” in Proceedings of the
25th International Conference on Software Engineering, ser.
ICSE ’03, Washington, DC, USA, 2003, pp. 274–284.

[8] M. Jorgensen and M. Shepperd, “A systematic review of
software development cost estimation studies,” IEEE Trans.
Softw. Eng., vol. 33, no. 1, pp. 33–53, Jan. 2007.

[9] M. H. Halstead, Elements of Software Science (Operating and
programming systems series). New York, NY, USA: Elsevier
Science Inc., 1977.

[10] T. McCabe, “A complexity measure,” IEEE Trans. Softw.
Eng., vol. SE-2, no. 4, pp. 308 – 320, Dec. 1976.

[11] L. Briand, P. Devanbu, and W. Melo, “An investigation into
coupling measures for c++,” in Software Engineering, 1997.,
Proceedings of the 1997 (19th) International Conference on,
May 1997, pp. 412 –421.

[12] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring
the structure of complex software designs: An empirical study
of open source and proprietary code,” Manage. Sci., vol. 52,
pp. 1015–1030, July 2006.

[13] S. Chidamber and C. Kemerer, “A metrics suite for object
oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp.
476 –493, Jun 1994.

[14] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Develop-
ment and application of an automated source code maintain-
ability index,” Journal of Software Maintenance: Research
and Practice, vol. 9, no. 3, pp. 127–159, 1997.

[15] S. C. Misra, “Modeling design/coding factors that drive main-
tainability of software systems,” Software Quality Control,
vol. 13, no. 3, pp. 297–320, Sep. 2005.

[16] Y. Zhou and B. Xu, “Predicting the maintainability of open
source software using design metrics,” Wuhan University
Journal of Natural Sciences, vol. 13, pp. 14–20, 2008.

[17] R. Harrison, S. J. Counsell, and R. V. Nithi, “An investigation
into the applicability and validity of object-oriented design
metrics,” Empirical Softw. Engg., vol. 3, no. 3, pp. 255–273,
Sep. 1998.

[18] E. Arisholm, “Empirical assessment of the impact of struc-
tural properties on the changeability of object-oriented soft-
ware,” Information and Software Technology, vol. 48, no. 11,
pp. 1046 – 1055, 2006.

[19] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, vol. 23,
no. 2, pp. 111 – 122, 1993.

[20] A. B. Binkley and S. R. Schach, “Inheritance-based metrics
for predicting maintenance effort: An empirical study,” Com-
puter Science Department, Vanderbilt University, Tech. Rep.
TR 9705, 1997.

[21] M. P. Ware, F. G. Wilkie, and M. Shapcott, “The application
of product measures in directing software maintenance activ-
ity,” J. Softw. Maint. Evol., vol. 19, no. 2, pp. 133–154, Mar.
2007.

[22] P. Anbalagan and M. Vouk, “On predicting the time taken
to correct bug reports in open source projects,” in Software
Maintenance, 2009. ICSM 2009. IEEE International Confer-
ence on, Sept. 2009, pp. 523 –526.

[23] S. Demeyer and S. Ducasse, “Metrics, do they really help,” in
Proc. Langages et Modèles à Objets LMO (LMO’99), Paris,
France, 1999, pp. 69–82.

[24] M. Alshayeb and W. Li, “An empirical validation of object-
oriented metrics in two different iterative software processes,”
IEEE Trans. Softw. Eng., vol. 29, no. 11, pp. 1043 – 1049,
Nov. 2003.

[25] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive com-
parison of bug prediction approaches,” in Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on,
May 2010, pp. 31 –41.

[26] J. Brooks, F.P., The Mythical Man-Month, Essays on Software
Engineering. Reading, MA: Addison-Wesley, 1975.

[27] J. Dolado, “On the problem of the software cost function,”
Information and Software Technology, vol. 43, no. 1, pp. 61
– 72, 2001.

[28] K. Z. Michalis Xenos, D. Stavrinoudis and
D. Christodoulakis, “Object-oriented metrics - a survey,” in
Proceedings of the FESMA 2000, Federation of European
Software Measurement Associations, Madrid, Spain, 2000.

[29] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of
software maintainability prediction and metrics,” in Empirical
Software Engineering and Measurement, 2009. ESEM 2009.
3rd International Symposium on, Oct. 2009, pp. 367 –377.

[30] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit
framework for making architectural decisions in a business
context,” in Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, vol. 2, May 2010, pp. 149 –
157.

[31] E. H. Ferneley, “Design metrics as an aid to software main-
tenance: An empirical study,” Journal of Software Mainte-
nance: Research and Practice, vol. 11, no. 1, pp. 55–72, 1999.

[32] H. Yang and E. Tempero, “Measuring the strength of indi-
rect coupling,” in Software Engineering Conference, 2007.
ASWEC 2007. 18th Australian, April 2007, pp. 319 –328.

[33] V. Basili, L. Briand, and W. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans.
Softw. Eng., vol. 22, no. 10, pp. 751 –761, Oct 1996.

[34] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza,
“Content classification of development emails,” in Proceed-
ings of the 2012 International Conference on Software En-
gineering, ser. ICSE 2012, Piscataway, NJ, USA, 2012, pp.
375–385.

[35] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bern-
stein, “The missing links: bugs and bug-fix commits,” in
Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, ser. FSE
’10. New York, NY, USA: ACM, 2010, pp. 97–106.

