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ABSTRACT
In this paper, we present an approach to detect design rule

violations that could cause software defects, modularity de-
cay, or expensive refactorings. Our approach is to compute
the discrepancies between how components should change
together based on the modular structure framed by design
rules, and how components actually changed together re-
vealed by how modification requests were fulfilled. Our con-
tributions include a design violation detection framework
and a design-rule based impact scope prediction algorithm.
We evaluated our approach using the version history of three
large-scale open source software projects. We examined all
identified violations to check whether they were refactored
or recognized by the developers in later versions.

Our results show that (1) on average 73% of the violations
we identified were either recognized or refactored in later re-
leases (when using .5 confidence and varying support from 2
to 10 in Hadoop); (2) our approach can identify problematic
design violations much earlier than manual identification by
developers; and (3) the identified violations cover multiple
bad smells, such as tight coupling and code clone.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance and Enhance-
ment—refactoring, restructuring ; D.2.10 [Software Engi-
neering]: Design—design rule violation, refactoring

Keywords
design rule violation detection, refactoring, bad code smells

1. INTRODUCTION
Empirical studies have revealed strong correlations be-

tween software defects and unintended violations of design
decisions [7, 20]. Some design violations are not easily de-
tectable by traditional software verification and validation
techniques because they may not influence the functionality
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of software systems directly. For example, inexperienced de-
velopers may forget to remove experimental scaffolding code
that should not be kept in the final product, and an ap-
plication programming interface (API) may be accidentally
defined using non-API classes [14]. Such design violations
could cause modularity decay over time and may require
expensive system-wide refactorings.

In this paper, we present an approach to detect and locate
design violations early in the development process. This
approach automatically detects design violations by com-
paring inferred design rules [1]—which components should

change together according to the modular structure of soft-
ware—with inferred change coupling—which components ac-
tually change together according to revision histories.

Consider the following example. If class B implements in-
terface A, then A can be seen as a design rule that is designed
to be stable, and A should not be affected by changes to its
subordinate design decisions, such as B. If A always changes
due to B’s modifications, this may cause ripple-effects to
other classes implementing A. If the actual code change his-
tory shows that changing B always requires changing A, it
implies that either the reality deviates from the designer’s
assumption or suspicious dependencies have been introduced
through quick and dirty maintenance activities. In these
cases, the modular structure framed by the original design
rules is not respected and we call such a symptom as a design

rule violation, or design violation for short.
We applied our approach to the version histories of three

large-scale open source software systems: 15 releases of Ha-
doop Common,1 9 releases of Derby,2 and 11 pre-releases of
JEdit.3 If an identified violation was problematic, it is possi-
ble that developers recognized this problem and fixed it in a
later release through a refactoring. We consider an identified
violation as a confirmed violation if it was indeed addressed
by developers later. We used two complementary evalua-
tion methods. First, we compared our design violations with
refactorings automatically reconstructed using Kim et al.’s
API matching technique [16]. Second, for the remaining vi-
olations, we manually examined modification requests to see
whether those violations were later refactored or at least rec-
ognized. Since it is possible that the design rule violations
we detected in recent versions are not addressed or even
realized by the developers yet, we also manually examined
the corresponding code to see whether they embody obvious
design problems such as cyclical dependencies.

1http://hadoop.apache.org/common/
2http://db.apache.org/derby/
3http://www.jedit.org/



The evaluation shows that our approach can accurately
identify design violations. For example, with .5 confidence
and varying support from 2 to 10, on average, 73% percent of
the violations we identified were confirmed violations. How-
ever, the accuracy of our approach depends on the number of
modification requests to be used as input. In fact, the more
modification requests are available, the more accurate our
approach is. For example, with 344 modification requests
in Hadoop, the precision of identified violations ranges from
25% to 100%, depending on various support and confidence
levels, while there were much fewer confirmed violations for
Derby and JEdit with much less precision (ranging from
10% to 75%) because of the dearth of available modification
requests that could be mapped to change-set solutions. Sec-
ond, our approach identifies design violations much earlier
than manual identification by developers, showing that our
approach has the potential to reduce maintenance costs by
identifying refactoring opportunities early in the develop-
ment process. Third, the identified violations include vari-
ous types of bad smells, such as tight coupling of components
and cloned code.

The rest of this paper is organized as follows. Section 2
presents related work and how our approach differs from ex-
isting approaches. Section 3 describes our design violation
detection approach and several background concepts. Sec-
tion 4 details our evaluation method and empirical results.
Section 5 discusses the strengths and limitations of our ap-
proach and Section 6 concludes.

2. RELATED WORK
In this section, we compare and contrast our approach

with other related research topics.

Dependency Structure and Software Defects.
The relation between software dependency structure and

defects has been widely studied. Many empirical evaluations
(e.g., Selby and Basili [20], Cataldo et al. [7]) have found
that modules with lower coupling are less likely to contain
defects than those with higher coupling, and various met-
rics have been proposed (e.g., Chidamber and Kemerer [8])
to measure coupling and failure proneness of components.
The relation between change coupling [11] and defects has
also been recently studied. Cataldo et al.’s [7] study revealed
strong correlation between density of change coupling and
failure proneness. Fluri et al.’s [9] study shows that a large
number of change coupling relationships are not entailed by
structural dependencies. The purpose of these studies are
to statistically account for the relationship between software
defects and logical and syntactic dependencies. In contrast,
our approach locates the concrete files involved in problem-
atic design violations that may cause modularity decay and
software defects.

Automatic Detection of Bad Code Smells.
Fowler [10] describes the concept of bad smell as a heuristic

for identifying redesign and refactoring opportunities. Ex-
ample bad smells include code clone and feature envy (when
a class excessively uses methods of another class). Garcia et
al. [12] proposed several architecture-level bad smells. To au-
tomate the identification of bad smells, Moha et al. [17] pre-
sented the Decor tool and domain specific language (DSL)
to automate the construction of design defect detection algo-

rithms. For example, to detect spaghetti code, they use the
DSL to describe code that contains long methods, methods
with no parameters, no inheritance, the use of global vari-
ables, and no polymorphism. Based on such description,
their framework generates an algorithm that can identify
code fragments with bad smells. Several other techniques
[21–23] automatically identify bad smells that indicate needs
of refactorings. For example, Tsantalis and Chatzigeorgiou’s
technique [22] identifies extract method refactoring opportu-
nities using static slicing. Detection of some specific bad
smells such as code duplication has also been extensively
researched. Higo et al. [13] proposed the Aries tool to iden-
tify possible refactoring candidates based on the number of
assigned variables, the number of referred variables, and dis-
persion in the class hierarchy. A refactoring can be suggested
if the metrics for the clones satisfy certain predefined values.

Our design rule violation detection approach is different
in several aspects. First, our approach is not confined to
particular types of bad smells. Instead, we observe that
many types of bad smells are instances of design rule viola-
tions that can be uniformly detected by our approach. For
example, when code clones change frequently together, our
approach will detect that this co-change pattern deviates
from design-rule based impact scope prediction. Second,
the number of bad smells detected by these approaches can
be very large, covering many parts of the system, making
it hard to determine which part should be refactored first.
In contrast, our approach detects violations that happened
most recently and frequently, having the potential to iden-
tify the most prominent problems that are worthwhile to
address soon. Similar to our approach, Ratzinger et al. [18]
also detect bad smells by examining change couplings de-
rived from revision histories. However, their approach leaves
it to developers to identify potential design violations from
change coupling history visualization. Third, our approach
uses a high-level design model representation (augmented
constraint network [4, 5]) as a basis for describing design
decisions. Though, we used design models automatically
derived from source code in this paper, this approach can
be used with developer-provided, high-level design models.

Impact Scope Prediction.
Various approaches (e.g., Bohner and Arnold [3], Ying

et al. [28], Zimmermann et al. [29]) have been proposed to
predict the impact scope of a modification. Cai and Sulli-
van’s ACN-based change impact analysis [6] uses constraint
solving to list all minimally differing designs, given a spe-
cific design decision change. The purpose of these previous
approaches are to increase prediction accuracy so that the
designers can estimate modification cost. In contrast, our
approach focuses on identifying design violations that are
evidenced by co-change patterns.

Refactoring Reconstruction.
Refactoring reconstruction (RR) techniques [16, 24] com-

pare two program versions and look for a predefined set of
refactoring patterns: move a method, rename a class, add
an input parameter, etc. (Comparison between existing RR
tools is described elsewhere [27].) While program differenc-
ing tools stop at mapping corresponding code elements, RR
tools infer refactorings that explain the identified correspon-
dences at the level of a method, class, or file. While these
approaches retrospectively examine what refactoring activ-



ities happened in the past, our approach detects potential
design violations, thus suggesting which part of system may
require refactorings. In this paper, we leverage an automatic
refactoring reconstruction tool [16] to evaluate our design
rule violation detection approach.

3. DESIGN RULE VIOLATION DETECTION
In this section, we describe a motivating example and an

overview of our design rule violation detection approach.
We also describe how we predict impact scope based on in-
ferred design rules and how we predict impact scope based
on change coupling.

3.1 Motivating Example
Alice is a project manager. Her team just released ver-

sion n of a software system. A lot of modification requests
(MRs) were fulfilled during this release, including both bug
fixes and feature enhancements. These modifications were
accomplished by multiple developers with different levels of
capability and experience. Before Alice launches the de-
velopment process for release n+1, she wants to make sure
that the modular structure of the system is well-maintained.
That is, she would like to check that there was no quick and
dirty implementation, which introduced unexpected depen-
dencies or broke important design rules. Fixing these prob-
lems would ensure that they do not accumulate into severe
modularity decay. Our design violation detection frame-
work, Clio4, analyzes software configuration management
(SCM) history and modification requests to help Alice iden-
tify potential design problems.

As a design problem reported to Alice, consider the ex-
ample shown in Figure 1. Class Grocery is a subclass of
Item. The public interface of class Item is a design rule [1]
in the sense that it hides changes to the implementation of
Item and it should remain stable. Using Clio, design-rule
based prediction would never report that changes to the im-
plementation of Grocery will require compensating changes
to its superclass Item. However, if change-coupling based
prediction shows that Item always changes due to changes
in Grocery, then a set of discrepancies will be reported to
Alice showing that there is a deviation involving Grocery

and Item and with high support and confidence. Such devi-
ation is problematic because it may cause a ripple effect to
other components that use Item’s interface. We suspect that
changes to Grocery is violating Item’s design rule, meaning
that there exists a problematic dependency between them.

Grocery Item

Figure 1: Example UML Diagram

3.2 Framework Overview
The design violation detection framework takes the fol-

lowing artifacts as input: (1) the original design structure
of the software before implementing these modification re-
quests, that is, the design model of version n − 1, (2) the
revision history of the project, and (3) the information about
which and how modification requests in the last release were

4Clio is the Greek muse of history.

fulfilled. We call the first set of files that need to be changed
to fulfill a modification request, the change source, for which
the change scope is to be identified. A change source can be
identified by examining the MR’s descriptions, comments,
etc. For each resolved MR, we obtain a set of files that were
changed to implement the MR, which we call as a solution

change-set S. Numerous MR tracking systems can be in-
tegrated with version control systems, making it easier to
associate MRs with their corresponding change sets.5

Figure 2 shows an overview of our design violation detec-
tion approach. Moka [25] is our reverse-engineering tool that
derives a UML class diagrams from compiled Java binaries.
The uml2acn [25,26] is our tool that infers design structure
from a UML class diagram and transforms it into an aug-

mented constraint network (ACN) [4,5], a design model that
formalizes the key concepts of Baldwin and Clarks’s design
rule theory [1]. Minos is our ACN-based design construction
and modularity analysis tool [26]. Minos employs a plug-in
architecture that facilitates the addition of new analyses.

Given a change source, we predict its impact scope us-
ing two different prediction algorithms: (1) dr-predict, an
algorithm based on design-rules derived from an ACN (2)
logic-predict, an algorithm based on co-change patterns (i.e.,
change coupling). The dr-predict plug-in outputs a set of
files that are likely to be changed together with the speci-
fied change source according to the design rule theory. Sec-
tion 3.3 presents the algorithm of the dr-predict. The output
of dr-predict is denoted by FileSet A in Figure 2.

Given the revision history, the extract plugin of Clio com-
putes change coupling. Given a change source, the logic-

predict plugin of Clio reports how components were actually
changed together, recorded in FileSet B. Using the impact
scopes A (from the ACN model) and B (from change cou-
pling analysis), and a MR solution S, the detect plug-in
computes a set of discrepancies, called the discrepancy set

D = (B ∩ S)\A. By using B ∩ S, we identify the subset of
the solution that is logically coupled with the change source
and only consider the files that change frequently with the
change source.

3.3 Design Rule-based Scope Prediction
This section discusses our design-rule based impact scope

prediction algorithm that is based on our prior work on the
augmented constraint network (ACN). We first describe the
key concepts of the ACN and design rule hierarchy. Then we
describe our new impact scope prediction approach based on
the ACN.

Background: Augmented Constraint Network.
The augmented constraint network (ACN) is a design mo-

del created by Cai and Sullivan [4,5]. This model is designed
to express the assumption relations among design decisions.
Figure 3 shows a sample ACN model automatically derived
from the UML class diagram shown in Figure 1. An ACN
consists of a constraint network that models design decisions
and their relations, a dominance relation that formalizes de-
sign rules, and a cluster set in which each cluster represents
a different way to partition a design. A constraint network
consists of a set of design variables, which model design di-

5Consistent with the definitions of Ying et al. [28], a modifi-
cation request can be either a bug fix or enhancement task.
A solution (or a change-set) is a set of of files that contribute
to an implementation of a modification request.
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Figure 2: Approach Overview

mensions, environment conditions, and their domains; and
a set of logical constraints, which model the relations among
variables. The main relations we model using an ACN is the
assumption relations among design variables. For example,
the third constraint in Figure 3 models that the implemen-
tation of class Grocery assumes that the interface of class
Item is as originally agreed.

Baldwin and Clark define design rules as stable design de-
cisions that dominates other subordinating decisions and de-
couples other wise coupled decisions. We augment the con-
straint network with a binary dominance relation to model
asymmetric dependence relations among decisions, formal-
izing the concept of design rules. For example, the third
dominance relation pair in Figure 3 indicates that the de-
cision for how to implement class Grocery cannot influence
the design of Item’s interface; in other words, we cannot ar-
bitrarily change the interface of Item to simplify class Gro-
cery’s implementation because other components may rely
on that interface. Our design violation detection approach
aims to identify situations where such a design rule is not
followed.

Impact Scope Prediction.
Our algorithm for predicting impact scope from an ACN

leverages Robillard’s software dependency analysis algorithm [19]
and our previous work on design rule hierarchies [26]. Robil-
lard presented an algorithm for recommending relevant code
from initial elements of interest (change source) by analyz-
ing the topology of a software dependency graph. We apply
a variation of his algorithm using a design rule hierarchy
graph as the underlying dependency structure.

In our previous work [26], we showed that a directed-
acyclic graph (called the DR hierarchy) can be automati-
cally derived from an ACN, revealing the impact scope of
each design rule. This graph provides two useful properties
that can be leveraged in our impact scope prediction algo-
rithm. First, the DR hierarchy explicitly identifies the de-

Variables:

Grocery interface : {orig, other}

Grocery impl : {orig, other}

Item interface : {orig, other}

Item impl : {orig, other}

Constraints:

Grocery impl = orig ⇒ Grocery interface = orig

Item impl = orig ⇒ Item interface = orig

Grocery impl = orig ⇒ Item interface = orig

Grocery interface = orig ⇒ Item interface = orig

Grocery impl = orig ⇒ Item impl = orig

Dominance Relation:

(Grocery impl, Grocery interface)

(Item impl, Item interface)

(Grocery impl, Item interface)

(Grocery interface, Item interface)

(Grocery impl, Item impl)

Figure 3: Augmented Constraint Network

sign rules for any part of the design. With this information,
we can ensure that design rules are not predicted as being
in the impact scope of the change source because the design
rules should remain stable. Second, each vertex of the DR
hierarchy aggregates a set of ACN variables, approximating
an independent task assignment; in other words, each ver-
tex contains a set of design decisions that can and should be
made together, and vertices in the same hierarchy level can
be assigned as tasks to be completed in parallel. Edges rep-
resent a potential pairwise dependence relation—such that
if there is an edge u → v then a change to u may require a
change to v. Because of the property of independent tasks,
we assume that if one ACN variable in a vertex is in our
impact scope, then all ACN variables in that vertex are in
also our impact scope.

b

d

a

f

e

c

h

g

µ(a) = 1

µ(h) = 0

µ(c) = 0.90

µ(b) = 1

µ(d) = 0.82
µ(e) = 0.71

µ(g) = 0.59

µ(f) = 0

Figure 4: Example DR Hierarchy Graph

Figure 4 shows an example DR hierarchy graph, which we
use to illustrate our design-rule based impact scope predic-
tion algorithm. The vertices with shaded background and
white text are the change source extracted from the mod-



ification request. Starting from these vertices, we assign a
weight µ, in the range [0, 1], to each vertex, in a breadth-first
order. The change source vertices are assigned the maximum
weight of 1 and added to a set S, which we call the set of
interest. From vertex a, we examine its neighbors and assign
them a weight, because these are the elements, identified by
the ACN and DR hierarchy, as being subordinate design de-
cisions to the design rule a, and potentially need to change
if a changes. While traversing the graph to assign weights,
we ignore those vertices that are design rules to the change
source. Since the DR hierarchy identifies the design rules of
a system, we can easily determine which vertices to ignore.

Robillard [19] defines a formula for computing the weight
of a vertex:

µ0 =

(

1 + |Sforward ∩ S|

|Sforward|
·
|Sbackward ∩ S|

|Sbackward|

)α

Consider computing the weight of c. Here Sforward = {b, c, d}
is the set of neighbors, through outgoing edges, of a and
Sbackward = {a} is the set of neighbors, through incoming
edges, of c. The value of µ0 is scaled by a constant α (de-
fined to by 0.25 in both Robillard’s work and our evaluation),
however the value of this constant does not affect the order
of suggested elements. Using this formula, we compute the
weight of c as µ(c) = µ0(c) · µ(a) = ( 1+1

3
· 1

1
)0.25 ≈ 0.9.

Repeating this, we can assign weights to all the neighbors
of a. Then we compute the weights for the neighbors of b.
In computing the weight of e, we have Sforward = {d, e}
and Sbackward = {b, c}. So that µ(e) = µ0(e) + µ(b) =
( 1+0

2
· 1

2
)0.25 ≈ 0.71. Since we already assigned a weight to

the other neighbor of b, through a, we are finished with one
iteration of our algorithm. Basically, by using Robillard’s
formula, we assign a higher weight to vertices that share
more edges with elements in the set of interest S.

To start the next iteration of our algorithm, we take all
the vertices that have just been assigned weights, add them
to the set of interest S, and use them as the starting points
for weight assignment. For example, since e was assigned
a weight in the previous iteration, we next compute the
weights of its neighbors, which is only g. So S = {a, b, c, d, e},
Sforward = {g}, and Sbackward = {e, h}, giving us a weight
for g of µ(g) = µ0(g) · µ(e) = ( 1+0

1
· 1

2
)0.25 · ( 1

4
)0.25 ≈ 0.59.

In scaling the weight of g by the weight of e, we are ba-
sically assigning lower weights to vertices that are further
away from change source.

We repeat this process of iteratively assigning weights to
vertices until the new weights fall below a certain thresh-
old. All vertices that were not assigned a weight are consid-
ered to have the minimum weight of 0. Figure 4 shows the
weights for each vertex after all weights are assigned. The
vertices whose weights are above the threshold are then rec-
ommended as being in the impact scope. Below, we discuss
how this minimum threshold is determined.

3.4 Change Coupling-based Impact Scope Pre-
diction

The extract plug-in of Clio takes source code revision his-
tory as input and extracts the change coupling between files,
storing the support and confidence values between files into a
database for later use. The logic-predict plug-in implements
the change coupling analysis algorithm created in previous
research by Ying et al. and Zimmermann et al. [28,29].6 It
6Consistent with Zimmermann et al. [29], the frequency of a

reads the change couplings from the database and predicts
the impact scope (noted as B in Figure 2) from the change
source. A file is predicted to be in the impact scope if the
corresponding co-change pattern’s support and confidence
are above the minimum support and confidence thresholds.

3.5 Discrepancy Analysis
When using dr-predict and logic-predict plug-ins to calcu-

late design-rule based and history-based impact scopes, we
vary the heuristic thresholds to find the values that maxi-
mize the average F1 score over all the MRs. With dr-predict,
we vary the minimum weight threshold from 0 to 0.95 (by
increments of .05). With logic-predict, we vary minimum
support from 2 to 10 and the minimum confidence value
from 0 to 0.95 (by increments of .05). and Once we have
discrepancy sets, we use the heuristics of support and con-
fidence for determining which files in the discrepancy sets

are potential violations and deserve further investigation. A
violation is defined as a set of files that our approach recom-
mends to the maintainer. As an example of determining a
violation, we consider two MRs with the same change source
of a. Suppose that the discrepancy set is {{a,b,c}, {a,b}}.
Then, we say that {a,b} is involved in a potential violation
with support 2 and confidence 1. On the other hand, {a,b,c}
is involved in a discrepancy with support 1 and confidence
0.5. In our evaluation, we considered various support and
confidence values and their impact on identifying actual de-
sign problems.

4. EVALUATION
We explore the following questions to assess the effective-

ness of our design rule violation detection approach.
Q1. How accurate are the design violations iden-

tified by our approach? In order to measure the preci-
sion of identified design violations, we examine the project’s
version history to see whether and how many violations we
identified in earlier versions are refactored in later versions
or recognized as design problems by developers. This is a
conservative assessment because it is possible that some vio-
lations we identified have not been recognized by the devel-
opers, and could be refactored in future releases. We do not
calculate the recall of our result because it is not possible to
find all possible design issues in a system.

Q2. How early can our approach enable design-
ers to identify problematic violations in the devel-
opment life-cycle? To answer this question, for each con-
firmed violation, where it was actually refactored or recog-
nized by the developers

Q3. What are the characteristics of design viola-
tions identified by our approach? We manually exam-
ine the types of design violations found by our approach to
see whether they have symptoms of bad code smells, such
as cyclic dependencies, code clones, poorly designed inheri-
tance hierarchy, etc.

set in a set of transactions T is frq(T, x) = {t|t ∈ T, x ⊆ t}|.
The support of a rule, x1 ⇒ x2, by a set of transactions T
is supp(T, x1 ⇒ x2) = frq(T, x1 ∪ x2). The confidence of a

rule is conf(T, x1 ⇒ x2) =
frq(T,x1∪x2)

frq(T,x1)
.



Table 1: Characteristics of Subject Programs
Subjects Hadoop Derby JEdit

SLOC 13K to 64K 313K to 360K 64K to 98K
# Revisions 3001 2732 4183

# Release Pair 15 9 11
# MRs 344 144 37

# Discrepancy
Sets

313 144 37

4.1 Subjects
We choose the open source Hadoop, Derby, and JEdit

projects as our evaluation subjects. Both Hadoop and Derby
employ an effective bug tracking system, JIRA,7 which is
integrated with their SCM tools. Because of this integra-
tion, we can easily associate the change-set solutions to MRs.
JEdit uses a simpler bug tracking system that is not inte-
grated with their SCM tool. However, since 2007, developers
have been manually posting comments to MRs with associ-
ated SCM transactions. Table 1 characterizes, for each sub-
ject, the number of lines of size, the number of revisions, the
number of pairs of releases examined, the number of modifi-
cation requests used as input, and the number of discrepancy
sets (also called diff sets) generated by our approach.

Hadoop is a Java-based system for distributed comput-
ing in a map-reduce paradigm. Since Hadoop consists of
several sub-projects, we focused on Hadoop Common, for-
merly called Hadoop Core. We applied our approach to the
first 15 releases, 0.1.0 to 0.15.0, covering a time period of
about three years of development. We used a total of 344
modification requests as input to our approach.

Derby is a relational database system, implemented in
Java. Derby was originally a commercial product, developed
by IBM and released to the open source community—be-
coming an Apache project in late 2004. We used 9 releases
of Derby, from release 10.1.1.0, to 10.5.3.0. These releases
covered almost four years of development. Although Derby
also employs JIRA, many modification requests did not have
corresponding change-set solutions. Hence, only 144 were
available for our evaluation. Note that although Derby is
about 6 times larger than Hadoop, the number of available
MRs is less than half of Hadoop.

JEdit is a Java-based text editor, with features such as
syntax highlighting and the ability to install additional plug-
ins. Although there are numerous plug-ins for JEdit, we only
focused on the main application for our evaluation. We used
11 pre-releases of JEdit, from 4.3pre7 to 4.3pre18, because
these were the only versions where we could find MRs that
can be mapped to change-set solutions. Since the bug track-
ing system was not integrated with their SCM tool, only
37 MRs were available for our evaluation. Compare with
Hadoop, the latest version of JEdit is about 1.5 larger than
the latest version of Hadoop, but only about 1/10 of the
number of MRs as Hadoop are available for our evaluation.

4.2 Evaluation Procedure
To assess the quality of reported violations, we checked

whether developers resolved the violations in later versions
through refactoring or redesign of the system. First, we
compared the detected design rule violations with refac-
torings that were automatically found by Kim et al.’s API
matching tool [16]. This API matching tool takes two pro-

7http://www.atlassian.com/software/jira/

Table 2: Identified Design Violations (support 1,
confidence 0)

|V | |V ∩ R| |V ∩ M| |CV | Pr.

Hadoop 825 91 117 208 0.25

Derby 316 0 39 39 0.12
JEdit 29 0 3 3 0.10

gram versions as input and detects nine different types of
refactorings at a method-header level. A method-header is
defined as a tuple, (package:String, class:String, pro-

cedure:String, input_argument_list:List[String], re-

turn_type:String). Each API-level refactoring is a tuple
modifying operation. This refactoring reconstruction al-
gorithm extracts method-headers from both old and new
versions respectively, finds a set of seed matches based on
name similarity, generates candidate high-level transforma-
tions based on the seed matches, and iteratively selects the
most likely high-level transformation to find a set of method-
header level refactorings. Further detail on transformation
semantics and refactoring reconstruction is described else-
where [15]. We found 1818 refactorings in the first 20 re-
leases of Hadoop, 1297 refactorings in 9 releases of Derby,
and 77 refactorings in 18 pre-releases of JEdit.

Like many refactoring reconstruction techniques, this tech-
nique suffers from two limitations: (1) found refactorings
are not necessarily correct API-level refactorings (the issue
of precision) and (2) not all refactorings are detected by the
technique (the issue of recall). However, we believe that
this automated technique is still useful for assessing design
rule violations because this technique has a 5.01% higher
precision than existing method-header level refactoring re-
construction techniques according our recent comparative
study [27], and there exists no technique that can automati-
cally identify all different types of refactorings by comparing
two program versions.

As these automatically reconstructed refactorings are me-
thod-header level refactorings, we aggregated the refactor-
ings up to a class level to compare with violations that are
reported at a file level. Then we checked whether each vio-
lation overlaps with any class-level refactorings. If the inter-
section between two sets are not an empty set, we say that
the reported violation is confirmed to be a true design vio-
lation as they were later refactored by developers. For each
violation that is matched with a reconstructed refactoring,
we manually checked the refactoring to verify that it was
indeed a correct refactoring that fixes design problems since
the API-matching tool can report false positive refactorings.
Furthermore, to complement this automated validation ap-
proach, we also manually inspected modification request de-
scriptions and change logs in the version history to check
whether programmers fixed, or at least plan to fix, those de-
sign violations through redesign or refactoring activities. We
also check corresponding code to see whether they embody
obvious design problems such as cyclical dependencies.

4.3 Results
We ran our experiments on a 2.53Ghz Intel Core 2 Duo

MacBook Pro with 4GB of RAM. Running our prediction
algorithm on the test subjects took about one minute per
release.



Accuracy of Identified Design Violations.
We first address evaluation question Q1. Table 2 shows

the maximal number of violations that could be identified
from the subject projects by our approach, using the min-
imum support threshold 1 and confidence threshold 0. Al-
though we do not advocate using these threshold values,
they serve to show the upper-bound on the number of viola-
tions our approach can produce, and the lower-bound on the
precision of our approach. Table 2 shows the total number of
violations identified by our approach (|V |), the total number
of violations that match with automatically reconstructed
refactorings (|V ∩ R|), the total number of remaining vio-
lations that were confirmed to be true violations based on
manual inspection (|V ∩M |), the total number of confirmed

violations |CV | (which is |V ∩R|+ |V ∩M |), and precision,
which is defined as the number of confirmed violations out
of the total number of reported violations: |CV |

|V |
. The table

shows that, with minimal support and confidence thresh-
olds, our approach identified 825 discrepancies in Hadoop,
out of which 208 were confirmed as violations. Among the
208 confirmed violations, 91 were confirmed through match-
ing with reconstructed refactorings and 117 were confirmed
through manual inspection of MRs.

We see from Figure 5 that as we increase the minimum
support and confidence thresholds for deriving violations
from discrepancy sets, the more accurate our predictions
become. For example, with a minimum support of 4 and
minimum confidence of 0.15, we identified 94 violations in
Hadoop, of which 68 were confirmed, producing a precision
of 0.72. Out of these 68, 30 were confirmed by reconstructed
refactorings and 38 were confirmed by manual inspection of
MRs. With a support of 8 and a confidence of 0.3, we ob-
tain 0.8 precision. Increasing the support threshold to 10, we
achieve a 0.83 precision. Alternatively increasing the confi-
dence of 0.6, we get 1.0 precision. However, as we see from
Figure 6, increasing the support and confidence values also
reduces the number of violations identified. Hence, select-
ing a support and confidence pair to use presents a trade off
between having a lower false positive rate (higher precision)
and a lower false negative rate (more violations identified).

Due to the much smaller number of modification requests
available for Derby, discrepancy set patterns did not recur
enough for us to obtain violations with higher minimum
support value than 2. With a minimum support of 2 and
confidence of 0, we found 36 violations, none of which were
matched with automatically reconstructed API refactorings.
We manually confirmed 21 of them as true violations based
on later MR descriptions and code inspection, producing a
precision of 0.58. Increasing the minimum confidence im-
proved our precision. With a confidence of 0.95, we found
16 violations, of which 12 of them were confirmed, producing
a precision of 0.75.

With even fewer number of modification requests, our tool
identified discrepancy sets for JEdit but there were no re-
curring patterns among these discrepancy sets to produce
any violations. For our evaluation, we considered these dis-
crepancy sets as violations with minimum support of 1 and
computed the precision from varying confidence from 0 to
0.95. With confidence of 0, we found 29 violations, of which
3 were confirmed, giving us a precision of 0.10. Increasing
the minimum confidence confidence improved our precision.
With a confidence of 0.95, we found 3 confirmed violations
out of 20 violations, giving us a precision of 0.15. In Sec-

tion 5, we further elaborate on the reasons why we obtained
such few violations for these subjects.

Figure 5: Precision (Hadoop)

Figure 6: Number of Identified Violations (Hadoop)

In-depth Case Study: Hadoop.
We conducted an in-depth study of violations found in

Hadoop. Figure 6 shows the number of identified violations
for various minimum support and confidence thresholds. We
categorized them into three categories: (1) violations that
are verified by automatically reconstructed refactorings, (2)
violations that we manually verified based on MR descrip-
tions but not reconstructed refactorings, or (3) false positive
violations. In addition, we also investigated (4) refactorings
that are not identified as design violations in earlier versions
(potential false negatives).

1. Violations that match automatically reconstructed

refactorings: Our tool found 76 violations belonging to
this category (support 2, confidence 0). For example, in re-
lease 0.3.0, our tool identified a violation involving FSDirec-
tory and FSNamesystem. FSNamesystem was the only client



of the FSDirectory.isValidBlock method and this method
created a tight coupling between the two classes. An API-
level refactoring was identified in release 0.13.0, showing that
the isValidBlock method was moved from FSDirectory to
FSNamesystem. Upon further investigation, we saw that, in
the subsequent release, the method was made private. In
this case, our tool identified this move method refactoring
opportunity, 11 releases prior to the actual refactoring.

2. Violations that were manually confirmed: Our
tool found 75 violations belonging to this category when
using support 2 and confidence 0. For example, our tool
reported a violation in release 0.2.0 involving TaskTracker,
TaskInProgress, JobTracker, JobInProgress, and MapOut-

putFile. However, none of these classes were mentioned
in the reconstructed refactorings. We searched Hadoop’s
MRs and found an open request MAPREDUCE-278, enti-
tled “Proposal for redesign/refactoring of the JobTracker

and TaskTracker”. The MR states that the TaskTracker,
TaskInProgress, JobTracker, and JobInProgress code is
hard to maintain, brittle, and merits some rework. In addi-
tion, the MR mentions that the poor design of these com-
ponents caused various defects in the system. Although our
tool also reports MapOutputFile in the violation, it is not
directly mentioned in the MR and may not actually be a
part of this design violation.

3. Violations that are false positives: Violations in
this category are not matched against any valid API refac-
torings or modifications requests, suggesting that such vi-
olations are not violations (false positives). However, not
being developers of Hadoop, we cannot be certain whether
such a violation is problematic or not. We found 184 vi-
olations belonging to this category using support of 2 and
confidence of 0. As an example, in release 0.4.0, our tool
reports a violation containing ClientProtocol, NameNode,
FSNamesystem, and DataNode. Although there may actually
be a design violation involving these components, we were
unable to identify it. We believe the reason why these com-
ponents are reported as a violation is because ClientProto-
col contains a public field with the protocol version number
and whenever the protocol changes, this number needs to
change. Since NameNode, DataNode, and FSNamesystem im-
plement the protocol, changes to them induce a change to
ClientProtocol.

4. Violations that are false negatives: Some recon-
structed refactorings are not matched to any violations iden-
tified by our tool. In such cases, we say that our tool failed
to identify a refactoring opportunity (false negative). For
example, the refactoring results show that in version 0.15.1,
the INode inner class of FSDirectory was extracted into a
separate class. INode provided the functionality for both
directories and files. To improve this design, the design-
ers moved the class out of FSDirectory and derived two
sub-types INodeFile and INodeDirectory. This allowed the
DFSFileInfo and BlocksMap classes to use specific subtypes
of INode. The INode is a design rule to both DFSFileInfo

and BlocksMap, and this was a design violation due to the
lack of separation of concern in the INode. However, our
approach did not identify a violation between these three
classes because they were only involved in a single MR dur-
ing the time frame we examined. The dearth of MRs in-
volving these components suggests that these components
do not belong to an actively-developed part of the system,
and was not identified by our approach.

In Section 5, we further discuss the causes of false positive
and false negative results.

Timing of Design Violation Detection.
For the set of confirmed violations in Hadoop, our ap-

proach identified a violation, on average, six releases prior
to the release that the classes, in the reported violations,
were actually refactored. Furthermore, there were also sev-
eral violations that later appeared in open modification re-
quests that describe needs for refactorings those violations,
signifying the event that developers recognized the design
problems. Figure 7 shows the distribution of the confirmed
violations, by version, for Hadoop with minimum support
of 2 and confidence of 0. Each point in the plot represents
a set of confirmed violations, such that the horizontal axis
shows the version that the violations were first identified by
our approach and the vertical axis shows the version that
the violations were refactored. Points above 20 in the verti-
cal axis signify that the violations have not been refactored.
For example, from the first release, our approach identified
a number of violations, some of which were refactored in
version 0.14.0 and some of which are not yet refactored.

Figure 7: Timing of Violation Detection (Hadoop)

Since most of the points in Figure 7 are above the line,
it indicates that our approach can identify design violations
early in the development process. Our evaluation found,
unsurprisingly, that increasing the support and confidence
thresholds delayed the identification of violations and re-
duced time between our identification of a violation and its
refactoring. We notice from Figure 7 that a small num-
ber of violations were not identified until after a refactoring
occurred. A reason for this is that sometimes refactorings
may not completely resolve a design violation among com-
ponents. Although we associated the identified violations
with past refactorings, this may indicate further refactor-
ing may be required but has not been performed for us to
detect it. For example, we detected a code clone issue in
version 0.12.0 of Hadoop and these clones were refactored
over several subsequent versions, indicating that the initial
refactoring did not completely resolve the problem.

For Derby, our tool reported 4 of the confirmed violations
in the sixth version that we studied. The current release of
Derby is four versions afterward but the violations have not
been refactored yet.



Characteristics of Identified Design Violations.
Most of the violations identified by our approach were

caused by tight coupling or cyclic dependencies, although
the refactoring techniques [10] to resolve them may differ.
Four other types problems identified by our approach as vi-
olations are poor inheritance hierarchy, the need for push-
down refactoring, the need for pull-up refactoring, and cloned
code. Using a minimum support of 2 and confidence of 0, we
identified 151 confirmed violations in Hadoop. Of these, 106
were due to tight coupling or cyclic dependencies, 27 from
the need for pull-up refactoring, 31 from the need for push-
down refactoring, and 59 from cloned code. Obviously from
these numbers, many of the violations fit into more than one
of these categories. With a minimum support of 2 and con-
fidence of 0, we identified 21 confirmed violations in Derby.
Of these 9 were due to tight coupling or cyclic dependencies
and 12 were due to poor inheritance hierarchy.

As an example of a poor inheritance hierarchy identi-
fied by our approach, the Statement class in Derby has
PreparedStatement and CallableStatement as subclasses.
Our tool identified these three components in a violation.
Rather than use polymorphism for the correct invocation of
certain methods, two boolean fields are stored in the State-
ment class, isPreparedStatement_ and isCallableState-

ment_, to denote the actual class type. To acknowledge this
design violation, the developer wrote a comment next to one
of the fields saying that “we can get rid of this member once
we define polymorphic [methods].”

Consider an example of identifying the opportunity to ap-
plying a push-down method refactoring technique [10] in
Hadoop. The DFSClient, ClientProtocol, and NameNode

were in a violation in version 0.2.0 and matched with an
API refactoring in version 0.14.0. In this refactoring, the
getHints method was pushed down from the ClientPro-

tocol to its subclass, NameNode. Since DFSClient was the
only user of this method, it appeared that the method was
not needed by other subclasses of ClientProtocol and was
refactored.

An example of a violation for the need to apply a pull-up
method refactoring, in Hadoop, involves the Distributed-

FileSystem and FileSystem classes. Our tool identified this
violation in version 0.2.0. In version 0.12.0, several meth-
ods in DistributedFileSystem were pulled up to its parent,
FileSystem. Since these methods were generic enough to
apply to all file system types, they were made available to
the other FileSystem subtypes.

A code clone example in Hadoop identified by our tool
involved in the classes Task, MapTask, and ReduceTask. Our
tool identified, in version 0.12.0, two violations: one involv-
ing MapTask and Task, and the other involving ReduceTask

and Task. Various methods and inner classes from Reduce-

Task and MapTask, which were code clones, were pulled up to
the parent Task class in versions 0.13.0, 0.14.0, and 0.18.0.

5. DISCUSSION
This section discusses our evaluation results, threats to

validity, and limitations of our approach.
The quality of our violation identification depends heav-

ily on the availability of modifications requests and their
associated change sets. It is not surprising then, that we
could not identify any violations from JEdit, given its mere
37 MRs. We found few violations in Derby due to the size
of the system compared to the number of MRs. Although

Derby is almost five times larger than Hadoop (in lines of
source code), we found less than half the number of MRs to
use as input. Given the large size of the system and the few
MRs available, the likelihood of any twoMR change sets con-
taining the same files is very low and therefore the number
of recurring patterns among the discrepancy sets, for deriv-
ing violations, is also low. In addition, our approach also
relies on the quality of SCM historical data for computing
change coupling; however, Derby was originally developed
as a commercial product and the first eight years of its de-
velopment history was unavailable for us to compute more
accurate change coupling information.

Since we only applied our approach to three subject sys-
tems, we cannot conclude that the effectiveness of our de-
sign violation detection approach generalizes to all software
systems; however, we did choose projects of different sizes
and domains to begin addressing this issue. In addition, we
cannot guarantee that the modification requests used in the
evaluation are not biased. As Bird et al. [2] showed, the
MRs that have associated change sets may not be represen-
tative of all the MRs in the system. For example, although
we claim to identify design violations for actively-developed
parts of a system, the collected MRs may not include the
most active parts of the system and would diminish the effec-
tiveness of our approach in reducing the maintenance costs
incurred by design violations.

The accuracy of our approach also depends on how ac-
curate the ACN model embodies design decisions and their
assumption relations. For example, the ACN model we used
in this paper were automatically generated from UML class
diagrams derived from the source code. Some dependencies
can only be reflected in other design models, such as an ar-
chitectural description language. It is possible that these de-
pendencies are missing from the ACN model, hence causing
false positives. The violation we discussed in the previous
section that contains ClientProtocol, NameNode, FSName-
system, and DataNode is such an example. A future work
is to evaluate the effectiveness of our approach using ACNs
generated by combining high-level architectural models with
source code.

We did not evaluate the recall of violations identified by
our approach. In other words, we did not count the number
of violations not identified by our approach. There are two
reasons for this. First, it is not possible to manually iden-
tify all design violations in a non-trivial-sized software sys-
tem, to determine the violations that our approach misses.
Second, since the number of design violations is likely to be
very large in non-trivial-sized software, it may be too expen-
sive for an organization to resolve all the violations. While
many existing approaches attempt to identify all refactoring
opportunities, our approach uses modification requests and
change coupling data to identify only violations in actively-
developed parts of the system—the ones that are incurring
maintenance costs. In the same vein, the violations iden-
tified by our approach can be prioritized for investigation
based on support and confidence values because the higher
the support for a violation, the more MRs led to its identi-
fication. Figure 5 corroborates this idea of prioritizing the
violations, since a higher precision of confirmed violations
were found with higher support and confidence values.

It is possible to use design structure matrices [1, 14], au-
tomatically derived from either source code or design mod-
els, to identify certain kinds of violations, such as cyclical



dependencies. However, we observe that some cyclical de-
pendencies shown in DSMs are not problematic designs or
they reside in stabilized, inactive part of the system, hence
do not need to be refactored. Additionally, a large number
of refactoring opportunities, such as code clones, cannot be
reflected by DSM models.

6. CONCLUSION
Unintended violations of design assumptions may not be

easily detectable by traditional software verification and val-
idation techniques, but could cause modularity decay and
expensive refactoring. To help software designers identify
such violations early in the development process, we con-
tributed an algorithm to predict the impact scope of a mod-
ification based on the modular structure framed by inferred
design rules. We also contributed a framework that identifies
problematic design violations by computing the discrepan-
cies between design rule-based impact scope prediction and
the change couplings revealed by how modification requests
were actually fulfilled.

We evaluated our approach by investigating the version
histories of Hadoop, Derby, and JEdit. Our evaluation shows
that our approach can identify design violations accurately
and the more modification requests are there, the more ac-
curate our approach performs. It shows that problematic
violations can be detected much earlier than manual identi-
fication by developers, showing the potential of preventing
modularity decay early in the development process.
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