
Elicitation and Utilization of Utility Functions for the Self-assessment of
Autonomic Applications

Paul de Grandis
Drexel University

paul.degrandis@drexel.edu

Giuseppe Valetto
Drexel University

valetto@cs.drexel.edu

Abstract

We present a non-analytic approach to self-

assessment for Autonomic Computing. Our approach
leverages utility functions, at the level of an autonomic
application, or even a single task or feature being
exercised within that application. This paper describes
the fundamental steps of our approach:
instrumentation of the application; collection of
exhaustive samples of runtime data about relevant
quality attributes of the application, as well as
characteristics of its runtime environment; elicitation
of a utility function, through statistical correlation over
the collected data points; and embedding of code
corresponding to the equation of the elicited utility
function within the runtime of the application, which
enables online evaluation of utility values. To illustrate
our elicitation method, as well as the prototype of our
framework for instrumentation, monitoring, and utility
function embedding/evaluation, we describe our
experience with two different case studies, and discuss
their results and implications.

1. Introduction

Autonomic software systems should be able to
adapt to a wide range of conditions, including
unforeseen and unexpected events that may occur as
the system is operating. Such events may often cause
the most critical in-the-field faults, since, by definition,
they have not been accounted for, or discovered,
during the various phases of the engineering process. It
is therefore arguable that the significant additional cost
and complexity incurred in designing and
implementing autonomic mechanisms for a software
system may at times be justifiable only in the case
where they provide some level of protection from
unpredictable conditions. However, self-adaptive
facilities are often designed to cover only certain
classes of expected or likely conditions, and designing

for the unexpected remains one major challenge in the
engineering of autonomic systems.

This paper presents an approach to attack that
challenge, related to the area of self-assessment, a
critical pre-requisite for being able to take decisions
upon adaptations that an autonomic system may need
to enact. Self-assessment requires that the autonomic
system must possess means to recognize its operational
state (or at least some salient properties of it), and
predicate upon that state, in order to evaluate whether
it is satisfactory, or should rather be changed.

Many current techniques pursuing self-assessment
are – in strict accord with the MAPE-K reference
architecture for autonomic systems [10] - analytic in
nature: for example, they may monitor the occurrence
of certain runtime conditions within the system, as in
[2], and try to diagnose their root cause, as in [13].

We propose a non-analytic approach that leverages
the concept of application-level utility, an abstraction
that captures in a single scalar value the salient
properties of an application, with regards to its
operational requirements, such as health, value, or
quality of service. In practice, our approach for utility-
based self-assessment is three-phased. Firstly, by
means of instrumentation, we collect runtime data at
two distinct levels: an array of measures sampling the
environmental operating conditions for the application;
and, in parallel, another set of quantitative
characteristics of application-level quality and
performance. We then elicit a utility function for the
application, through the statistical correlation of the
data collected at those levels. Finally, we turn utility
into an intrinsic characteristic of the application itself,
by using meta-programming techniques to embed the
utility function in its runtime libraries; that enables
online evaluation of application utility, which in turn
lays an objective basis for self-assessment and
decision-making.

In the remainder of the paper we describe our
method, with the help of various experiments we have
carried out, whose results we also present. We discuss

the engineering lessons we have learned in the process,
with implications in particular to embedding elicited
utility functions in legacy applications. Finally, we
outline further research opportunities on application-
level utility for autonomic computing. But, first, we
briefly review the concepts of utility and utility
functions, and discuss their usage in Autonomic
Computing.

2. Utility in Autonomic Computing

The concept of utility has it roots in Utilitarian
philosophy, and its earliest application perhaps in the
field of microeconomics, where it indicates the
satisfaction generated from owning or consuming a
good or service. Computer Science has borrowed the
term, and assigned similar semantics to it. For
example, in Artificial Intelligence, expected utility has
been indicated as a unifying principle for decision-
making rules [6], thus highlighting how utility
expresses the level of satisfaction of one’s goals.
Utility has been employed in a variety of other
computing areas, and even just an overview would
easily exceed our space limitations. To offer just a few
examples, in communication systems utility can be
used to optimize the consumption [3], or pricing [23],
of networking resources. In distributed computing, it
can for instance arbitrate the allocation of shared data
and other resources among concurrent processes [12].

In all cases, it is essential to be able to make the
utility abstraction operational. That translates into
devising a utility function that can capture the
definition - and compute values of - utility in the
context at hand. A utility function in the form U = f(V)
denotes how utility depends on a vector V[s0, …, sn] of
attributes that capture the state of the system and its
environment; the function f maps that - possibly large -
vector characterizing the running system to a single
scalar value U, conventionally in the [0,1] range.

In Autonomic Computing, as mentioned in [11],
utility functions become particularly attractive because
of their ability to quantitatively attribute points in the
system state space. They thus provide an objective and
quantitative basis for sound automated decision-
making, and they can tie those decisions to high-level
conceptual requirements, concerns and goals.

A utility function can for example guide automated
agents to devise or compare self-optimization
strategies, in order to ensure certain levels of
performance, or even assign monetary value to the
operation of a system. A common self-optimization
context in which utility has been applied is the
automated management of large, multi-application
computing infrastructures, like data centers. Walsh et

al. [22], and Das et al. [7], among several others, have
shown how utility functions can guide resources
allocation in a data center, based on the evaluation of
the (economic) value of the resources being
provisioned for hosted applications, and of those
applications for their owners or users. A different self-
optimization scenario is proposed by Cheng et al [5], in
which utility evaluation enables the choice among
alternative adaptation strategies for changing the
configuration of the architecture of a software system
at runtime.

Notice that in many current approaches, including
the ones above, the definition of the utility functions is
not a direct concern for the autonomic system itself.
Utility functions are often manually elicited with the
help of domain experts or application users [9], or from
contractual agreements, such as SLAs [17]. However,
objective and (at least partially) automated elicitation is
particularly desirable in Autonomic Computing,
because it leads to a function that faithfully fits the
recorded usage and intended purpose of the target
system. Approaches based on negotiation among
multiple parties have been used to automate the
elicitation of utility functions, limited to the resources
allocation scenario [1] [14].

The focus of our work is quite different from what
we have described so far, in terms of purpose, as well
as scope. We are interested in the non-analytic self-
assessment of a single executing application, or even a
single recognizable service or task executed by that
application. Several other non-analytic approaches
exist, based, e.g., on clustering [8] [16], which are able
to detect anomalous (i.e. uncommon) behavior.
However, those cannot quantitatively attribute
anomalies. Application-level utility functions can
automatically assign a value to a current state of
operation of the application or task, denoting, for
instance, its health or performance. In that sense, our
work is perhaps most similar to that of Sterritt and
Bustard [19], which also establishes a framework for
quantitative (although discrete) self-assessment, by
means of a multi-level scalar, called a “pulse”.
However, the definition of pulse levels for an
application, with their semantics and thresholds, is left
to the implementer.

We are interested, instead, also in the objective
elicitation of utility functions, that are tightly linked to
observable runtime properties. To that end, we employ
a statistics-based approach, which is discussed below.

3. Elicitation of application-level utility

In order to attribute utility semantics to a given
application, we conduct a process of correlation and

statistical fit between a vector of attributes of the
application behavior, and another vector of
characteristics of its runtime environment.

To illustrate that process, we briefly discuss hereby
the set-up and outcome of a case study on IP
teleconferencing, which was the first author’s initial
foray in this field. In that case study, which is
thoroughly described in [18], the collection of
application-level data was carried out based upon
subjective evaluation by users on their ability and
satisfaction in carrying out a variety of
communication-related tasks with the support of the
VoIP application (user-perceived utility). Those utility
values were then correlated to metrics of the network
channels used by the application (environment
characteristics, namely, bandwidth, latency and packet
loss rate), collected from within a testbed environment
in which such network conditions could be
manipulated and sampled. By throttling those
conditions and running a large number of experiments,
it was possible to derive mappings between those
environment-level characteristics and the utility of the
VoIP application as seen by its users. The experiments
not only allowed the synthesis of utility functions, but
also determined how the sensitivity of each task to the
varying conditions is different; hence different utility
functions were devised for the same application, on a
per-task basis.

Based on the experience of [18], we have started to
extend our statistical elicitation technique, to cases in
which the utility information is not provided by users.
Our goal is to substitute user perception with objective
measures of behavioral parameters of the application,
as observed, for example, by any client system using
that application’s services. To achieve that, we
instrument the application, and sample a chosen set of
salient application-level parameters, in conjunction
with environment characteristics. We then try to
correlate application-level and environment-level
measures: we calculate various moments of the
multidimensional graph generated from the
environment-level measures, and curve-fit it to the
corresponding application-level graph. The equation
that produces the best fit becomes our utility function,
which allows us to assign a utility scalar to the running
application, by simply monitoring the vector of
environment- and application-level characteristics
included in that equation.

Let us consider, for example, the utility function for
downloading a file with an FTP service (FTP utility is
discussed in detail as a case study in Section 5.1). For
such a task, the most significant application-level
measure is throughput, as seen by the FTP client
requesting the transfer. That effectively incorporates
and abstracts a number of phenomena that occur within

the FTP networking environment, such as protocol
handshaking and control flow, transfer error, packet
loss and retransmission, etc.; but it also depends on
other environmental factors, such as the raw
throughput and the latency provided by the network
socket, and their fluctuations over the time of the
transfer. We observe those environment metrics, as
well as throughput as seen from the FTP client, for a
large number of FTP test runs. We employ a controlled
testbed that enables us to collect at corresponding time
intervals those tuples (or data points), as well as vary
the running conditions from test run to test run, so that
we can crawl systematically through the multi-
dimensional operation space constituted by the metrics
being observed. We then proceed to synthesize offline
the equation for the application-level utility for FTP
download, based upon the collected data points.

A critical aspect of our technique is the choice of
parameters to be observed, which remains application-
or even task-specific. However, an advantage of our
approach over analytic techniques for self-assessment
is that – once defined – utility functions do not need to
monitor any application-specific events and patterns
thereof, nor develop any diagnostic capability to
prove/disprove hypotheses that are specific to the
application and those patterns. A utility-based self-
assessment approach may thus require significantly
less domain knowledge than most analytic techniques,
which is advantageous, since – as observed for
example by Tesauro [20] - the acquisition, modeling
and maintenance of domain knowledge in Autonomic
Computing is itself an open research issue, and tends to
be time-consuming and hard to generalize. Another
merit of our approach is that data collection can be
fully automated through instrumentation of the
application at hand, thus enabling collection in
contexts that closely match its natural running
conditions ion. Moreover, once our utility function are
synthesized, they are already tied to measures that are
inherently observable: therefore, the same
instrumentation previously used for the elicitation
process can be deployed within a utility-aware version
of the application, to compute its utility as it operates
in the field.

4. Making software applications utility-
aware

We have developed a system of code annotations

that supports both the data collection and elicitation
process, as well as the embedding of the resulting
utility function within the runtime code of the
application, at the same points where the data was
collected. Our annotations intercept the program

execution upon entering marked functions in the target
application. To the target application, those function
calls seem semantically identical, however a
background process is triggered by the annotation,
which monitors and collects the parameters of interest,
and calculates utility on the basis of those parameters.

For our prototype, we selected Python as the target
language, for its advanced introspection mechanisms
and its ability to foster meta-level programming
functionality. We christened our prototype Aupy,
which stands for “application utility with Python”.

In a first version of Aupy, our annotations were
implemented using a series of Python decorators,
associated to method definitions. Those decorators
trigger utility-specific code (either for monitoring or
utility computation), and specify whether that code
should be executed before the target method, after the
target method, before and after the target method, or
concurrently, that is, in the background while the target
method performs its operations. The table in Figure 1
provides a synopsis of Aupy annotations.

Figure 1: Aupy annotations.

In a second version of Aupy, we migrated from
Python decorators to Python contexts. Contexts, and
the scoping constructs they enable, allowed us to
associate utility to specific blocks of code, in addition
to entire methods. Annotations at the method level
remain very convenient to make legacy systems utility-
aware, since it is possible to associate them to – and
then seamlessly intercept – also methods defined
within and imported from libraries. However, context-
based operations give us better control: as the same
primitives for data collection and utility computation
are available to the new version of Aupy, we can now
work at finer levels of granularity. Another
advancement is that utility function can now be
composed, thanks to the combined properties of the
context construct and Python introspection. That way,
we can reuse already defined utility functions to form
new ones for a given context. Finally, we can pass
dynamic arguments and functions into a context,
enabling us to modify the path of execution and thus
introduce additional callbacks, embedded contexts, and
conditional utility functions. Although similar features
could have been engineered also within our decorators,
they are much more easily and naturally implemented
and integrated in contexts.

Our mechanism for method interception allows for the
adaptation of legacy systems to be retrofitted with
utility-aware behaviors, but also supports the
development of new systems with the same
capabilities. This is further illustrated in the case
studies that follow.

5. Case studies

5.1 FTP download

The goal of this case study was to validate our
approach to elicitation and embedding, as well as the
Aupy annotation framework, within a well-understood
scenario. We chose the FTP protocol, since it is a well-
known and widely studied system, with a clear
principled parameter that can be used to represent the
utility of the application, that is, data throughput.

This case study was conducted using a standard
FTP client written in Python and conforming to the
FTP RFC [15]. The FTP client was instrumented to
record its application-level throughput, as well as CPU
utilization, and RAM usage. From the networking
environment, we recorded raw channel throughput and
inter-arrival time, as measured on the socket of the
client machine. The tasks we profiled with data

INTENT SYNTAX NOTES
Monitor operation of the annotated code @monitor(*args) *args is a dynamic list populated with

utility functions. If None is passed, it
will use all functions defined with in the
same scope as the annotated code.

Pre-evaluated utility function @pre_utility Evaluation occurs upon entering the
annotated code.

Post-evaluated utility function @post_utility Evaluation happens upon leaving the
annotated code.

Enveloping utility function @utility Evaluation occurs upon entering, and
again after leaving, the annotated code.

Concurrently evaluated utility function @concurrent_utility Evaluation occurs concurrently with the
execution of the annotated code.

collection were the download of one large multi-
gigabyte file (in the following, FTP-bulk experiment),
and the consecutive download of multiple one-
megabyte files (FTP-small experiment).

First of all, an annotated version of Python FTP
library was constructed. To accomplish that, a subclass
of the FTP class in that library was developed, and we
used Aupy annotations to mark the subclass methods
implementing the FTP commands as code to be
monitored. As shown in the example below, the
annotated methods simply wrap pass-through
statements that invoke the same functionality in the
original FTPs library.

 @monitor(None)
 def ntransfercmd(self, command):
 return super(SafeFTP,

 self).ntransfercmd(command)
Next, a concurrent utility function was developed,

to capture and log data at the application as well as at
the environment level.

 @concurrent_utility
 def ftp_utility(self):
 # monitoring code below

...
The effect of this set of annotations is that, as the

monitored transfer command gets executed, Aupy
automatically finds all the utility functions defined
within the same language scope - in this example only
ftp_utility() is available - and run them as prescribed
by their @utility annotation.

Finally, we hijacked the original library and
substituted it with the annotated version: that is easily
accomplished due to the possibility in Python to import
library classes under alternate names, to preserve and
maintain control of the namespace. The code below
overrides the namespace of the original FTP library.

from ftplib import FTP
from aupy_ftp import SafeFTP as FTP
The instrumented FTP client application was then

run on a testbed, comprised of two Linux endpoint
machines and a BSD machine, which utilized the
dummynet1 utility to simulate a variety of network
conditions for our test runs. A single test run is a
complete file transfer scenario for a dummynet
network setup, which is comprised of given values for
bandwidth, latency, and packet loss settings. The
clocks on all the machines were synchronized before
each test run using NTP. A back channel was used for
logging and administrative actions, allowing the
network channel for the FTP experiments to be fully
dedicated to transfers.

1 See http://info.iet.unipi.it/~luigi/ip_dummynet/

We carried out a set of 125 test runs and repeated it
three times for both the FTP-bulk and FTP-small
experiments. During each test run, measurements of
environmental and application attributes were recorded
each second. We then aggregated the data and
performed data interpolation, resulting in an equation
that estimates client-side FTP application utility purely
on the basis of environment-level metrics, i.e., packet
inter-arrival time and channel throughput.

From the process above, we could clearly see how –
like in our pervious experience with VoIP [18] - FTP
application utility is task-dependent: the equations we
synthesized for the bulk-FTP and small-FTP
experiments differ significantly, as shown in Figure 2.

!

U
bulk

= a
1
X
1

+ a
2
X
2

+ a
4
X
4

+ a
5
X
5

+ b
1
Y
1

+ b
2
Y
2

+ b
5
Y
5

U
small

= a
4
X
4

+ a
5
X
5

+ b
1
Y
1

+ b
2
Y
2

+ b
4
Y
4

+ b
5
Y
5

Legend

Xi : ith statistical moment of packet inter-arrival time

Yi : ith statistical moment of socket throughput

FTP-bulk FTP-small

a1 -175150.7079 a1 0

a2 -145163.8736 a2 0

a3 0 a3 0

a4 -579.7485 a4 1028.3839

a5 2.0136 a5 -157.4976

b1 0.9241 b1 0.56368

b2 -0.2341 b2 -0.42717

b3 0 b3 0

b4 0 b4 612.90247

b5 -0.17755 b5 15.18621

Figure 2: utility equations for the FTP case study.

Our empirical verification confirmed how estimated
utility, i.e., the values of utility computed through the
above equations, approximates well the monitored
values of throughput for the FTP client (observed
utility) on corresponding data points. We show in
Figure 3 and Figure 4 the plots obtained from the FTP-
bulk experiment.

The next step was to embed the elicited functions in
the FTP client. For that, we simply had to enhance the
function ftp_utility, which previously simply used to
log our monitored metrics, with a call to Python code
representing the utility equations. We also carried out
further validation, since we continued to independently
log the FTP client throughput, to keep the observed vs.
estimated comparison active online. The same results
reported above were confirmed in this phase.

Figure 3: observed FTP utility.

Figure 4: estimated FTP utility.

5.2 Log explosion

The goal of this case study was to investigate
application-level utility to a domain different from
protocol-based applications (such as FTP or even
VoIP), and to experiment with our technique to solve a
real-world problem related to the management of IT
infrastructure. The problem at hand regards certain
faults that can cause a system to consume a global
resource rapidly and unexpectedly. As a consequence,
other functioning parts of the system are starved, which
usually results in complete system failure. Such a
crippling problem can arise for many disparate reasons
in a variety of computing systems, in the small as well
as in the large.

We have been able to work with one specific form
of that problem, occurring within a popular Python-
powered Web site (more than 1 million unique views
per day,): a “log explosion”, which caused the log
aggregation and rotation subsystem of the Web site
infrastructure to be overwhelmed with hard disk writes,
rapidly and at unpredictable junctures. System data on
those events was collected and analyzed, to discover
that a round-robin scheduler in charge of server-side
cache replication within a caching cluster would at
times fail and remain “stuck” on a given node. Every
attempt the scheduler would make to move to the next
node would fail, resulting in a log entry. Very quickly
the log would exhaust disk space, to the point that the
site would no longer be able to accept new connections
(which requires logging to be functional). Also
attempts to log onto the nodes by other means, like an
SSH session, would fail, since there would be no room
on the disk to log the session information. Existing
monitoring software for the site could not detect this
problem in time to avoid a complete system failure.
We therefore decided to try to use our framework to
recognize log explosions as they happen, without
having to investigate or resolve the root cause of that
faulty behavior. Our hypothesis was that by monitoring
the rates and accelerations of log writes, we could
come up with a utility function for the logging facility
that would tell us when an explosion was about to
occur.

Our testbed for this experiment was simple. One
machine was used to run a clean-room re-engineered
version of the faulty round-robin scheduler. The
system rotated through logical representations of
nodes, one of which was injected to cause a fault.
Additionally, in the experiment, log information was
also piped to standard-out to watch the system live. It
was pre-determined that on every twentieth rotation a
fault would be triggered on one of the nodes, causing it
to become unresponsive to all scheduler requests.

We also embedded Aupy code within the scheduler,
to capture the rate of log writes as well as their
acceleration rate. Under normal operating conditions,
the recorded log writes rate was consistently low, in
the order of one write/sec. Our concurrent monitors
were set to monitor at the same interval. During
repeated experiments, when an explosion occurred, log
write rates increased two orders of magnitude in the
first second, to roughly 720-780 writes/sec, and again
two orders of magnitude in the following second to
about 15000 writes/sec. In our particular testing
environment, hardware limits for disk write access
were reached within the third second. Acceleration
appears therefore to be exponential, which shows the
extremity of the phenomenon. Consequently, its
representation in terms of a utility function produced a
step-wise function dropping from 1 to 0 in the event of
an explosion.

Whereas we had hoped for a utility profile, which
could have possibly provided more preliminary
evidence of the build-up of the phenomenon, the step-
wise function, once embedded in the system allowed
us to recognize log explosions within one second from
the triggering of the node fault. We could thus easily
put into place a provision to block the round-robin
scheduler in time, and stop its runaway logging. We
intend to carry out more work on this particular
example, to gain further insight on the early assessment
of explosive resource consumption problems, .

6. Discussion

6.1 Lessons learned

Our work has provided us with a number of insights
on application-level utility for autonomic self-
assessment. First of all, we have gained an
understanding of a process to elicit utility functions by
monitoring the behavior of applications, and their
environment. That process is repeatable and requires
only a modicum of application-specific knowledge.
Although we have experience only with carrying out
that process in lab conditions, and in part (i.e. the
delicate statistical analysis phase) offline, it seems
feasible to consider it as a basis for working toward
online, automated synthesis of utility functions. We
expand on this matter as a possible direction for future
research in Section 6.2.

Our case studies have shown how utility at the
application level is task-dependent, and a number of
consequences descend from that. Since an array of
utility functions apply to the same system, and, in
some cases, such as our case study on FTP download,
to the same application feature, having elicited those

distinct utility functions is not per se sufficient: one
must also have the means to select them
opportunistically, based on the context of the task
being performed. That has engineering implications,
and has become one of the requirements driving our
Aupy framework. Our latest prototype allows to
associate multiple (possibly concurrent) utility
functions to the same code block. It also accounts for
conditional triggering and utility function composition,
via the construct of Python contexts.

The task-dependent nature of application utility also
helps understanding how our method fits naturally well
certain specific classes of applications. One example is
constituted by communication-oriented systems, which
are typically based upon protocols that codify and
restrict what the system is intended for. That facilitates
the extraction the system’s salient features, and can
guide the elicitation of appropriate utility functions for
the application tasks that reify those features. Similar
considerations often apply to infrastructure-level
facilities that - like in on our case study on server
logging – are characterized by a limited set of specific,
self-contained services they provide to the computing
environment as a whole. In the case of other classes of
applications, e.g., enterprise systems, the synthesis of
utility functions across the spectrum of all user tasks
enabled by their possibly very diverse, heterogeneous
services can become unfeasible, in particular in the
absence of automated support in the elicitation process.

An advantage of the fine-grained utility abstractions
required and at the same time enabled by our
framework is a viable approach to comparable,
interoperable and composable definitions of “health”
for different autonomic applications, which descends
from the unit-less and summative properties of utility
functions. It is well known how this applies at a
macroscopic level, e.g., for multiple applications
operating within the same provisioning infrastructure
(leading to a view of utility for the whole computing
environment, as discussed in [22]). It applies as well at
the micro-level of different tasks being performed
within the same application: for example, related to our
FTP case study, the utility of the FTP download
service as a whole could be expressed as a combination
of the utility values recorded for bulk downloads and
small download tasks as they occur. Things are
analogous in the increasingly common case of
component-based applications, or even systems-of-
systems, in which different pieces of legacy, COTS or
otherwise third-party functionality are integrated into a
new application. If all components could be
characterized with embedded utility functions, the
utility of the overall composite system could be
derived by combining the utility values recorded for
each of the various components.

Lastly, we have been able to test the limits of our
hypothesis that the utility abstraction can lead to non-
analytic self-assessment. Domain-specific knowledge
plays a role in our approach, but only in the initial data
collection phase, for the selection of the basic
characteristics of the application or task that must be
monitored. Past that phase, the whole process of
function elicitation and embedding, as well as utility
computation, remains application-agnostic. We see this
as a major factor enabling the assessment of the
application under scrutiny, no matter how unexpected
or unpredictable its state of operation can become.

6.2 Ongoing and future work

A central part of our approach is the process for the
elicitation of utility functions, which requires the
collection of a large amount of data and its statistical
analysis. Although data collection is automated, this is
currently a time-consuming process that occurs in the
lab, by means of a testbed environment that needs to be
configured for each application. Moreover, the
statistical analysis occurs offline, and can be rather
labor-intensive. This is an issue that must be resolved,
in order to use utility functions for self-assessment
extensively (that is, for a diverse range of
applications), and at the correct level of granularity
(that is, for the distinct features and tasks enabled by a
given application). We are now considering how to
attack that issue.

First of all, we want to move from in-the-lab to in-
the-field data collection. With Aupy, it is easy to
deploy in the field an instrumented version of the
application under scrutiny, so that its various features
can be exercised in regular working conditions.
However, in that case, it may be difficult to produce an
exhaustive map of evenly distributed data points, to be
fed to our statistical correlation analysis. It is likely
that many of the collected data points would tend to
gather in one or more dense areas within that space,
with other data points constituting outliers or
operational anomalies. Consequently, it might be
unfeasible to synthesize an equation that is valid
outside of the main operation areas, and which covers
and accurately attributes utility to anomalous data
points. On the other hand, we could identify and tell
apart different operation areas by analyzing in-the-field
data with clustering techniques – as shown for instance
by Quiroz et al. [16] - and possibly characterize those
operation areas in terms of different application
features being exercised. That would easily lead to the
elicitation of distinct utility functions for each of them.
Drawing an example from our FTP case study, tasks
like downloading of a single large multi-GB file, and
downloading of multiple 1 MB files would correspond

to two distinct, recognizable data point regions, and
could be treated independently from one another.

We also plan to leverage some AI-based techniques,
to advance towards automation of utility function
elicitation. For example, cooperative negotiation has
been already applied to Autonomic Computing
contexts, in which overall utility is not known or
cannot be expressed a priori, and must be elicited
incrementally from multiple interested parties [1] [14].
To apply and adapt those earlier results to our context,
we could employ multiple evaluating agents, each
defining its utility in terms of a single axis of the multi-
dimensional space being monitored. Each agent would
compute its local utility values for a number of sample
requests, and the aggregation of the various utility
perspectives thus generated would be used to compute
the overall utility function. Further insight on this
matter could come from the field of automated
learning. We plan to experiment with supervised and
unsupervised learning techniques, to help deriving
utility functions from the potentially large and high-
dimensional space monitored through Aupy.

Finally, since a utility function can be regarded as a
multi-dimensional map of application value, in which
the axes represent environmental as well as application
attributes, and assuming a management infrastructure
that is able to actuate some subset of those attributes
(at either level), it is conceivable to elaborate
actionable trajectories within that map, to move an
application from a low-utility state towards a higher-
utility state. A somewhat similar idea has been pursued
in [4]. To efficiently calculate those trajectories, we
could again leverage machine learning techniques, in
particular Reinforcement Learning (RL). RL has been
successfully used for Autonomic Computing in the
recent past to synthesize policies for decision-making,
aiming once again at self-optimization [20] [21]. A key
concept in RL is “reward”, a scalar that valuates the
observed consequence of a decision, and which the
learning agent making decisions aims to maximize.
The concept of utility naturally maps onto RL rewards;
thus, having elicited a utility function, it is easy to
compute rewards for trajectories within the state space
of the application, and segments within a trajectory.

With that development, utility-based methods could
be applied in Autonomic Computing not only to non-
analytic self-assessment (i.e., within the
reactive/introspective “Monitor+Analyze” portion of
the MAPE control loop), but also to the equally
important area of non-analytic, automated decision-
making. Such a technique could thus enable the design
of provisions for the “Plan+Execute” half of the MAPE
loop devoted to proactive adaptation, which could
potentially cope with unexpected events and
conditions.

7. Conclusions

This paper has presents a method and a tool for the
elicitation of application-level utility functions, which
can be subsequently employed for autonomic self-
assessment. Our work has provided us with an
understanding of an elicitation process based on the
statistical analysis of measurable data that is collected
at two levels: the application under scrutiny, and the
running environment hosting that application. We have
also acquired know-how on the engineering of a
framework for data monitoring and collection, as well
as the embedding of elicited utility functions in the
runtime code, which leads to seamless computation of
utility as the applications operates. We have developed
the Aupy prototype for such a framework, and
experimented with it in two case studies from diverse
application domains. Through those case studies we
have acquired insight on the task-based nature of
application-level utility, which has prompted us to
include fine-grained, block-wise support for utility
functions in our framework.

This work shows how application-level utility is a
viable abstraction for the non-analytic self-assessment
of autonomic systems, and can be made operational for
newly developed as well as legacy systems.

Finally, this can be a preliminary step to conduct
further research on application-level utility in
Autonomic Computing, regarding the fully automated,
in-the-field elicitation of utility functions, as well as
the possibility to leverage utility information for
automated and non-analytic decision-making on
application adaptation.

8. Acknowledgements

The authors would like to thank the other members
of the Software Engineering Research Group (SERG)
at Drexel University. In particular, we are grateful to
Prof. Spiros Mancoridis, and to students Max
Shevertalov and Ed Stehle, who have been
instrumental in initiating and carrying out the work
leading to the reported results.

References

[1] C. Boutilier, et al., “Cooperative Negotiation in

Autonomic Systems using Incremental Utility
Elicitation,” Proc. 19th Conference on Uncertainty in
Artificial Intelligence 2003, pp. 89-97.

[2] M.Brodie et al. “Quickly Finding Known Software

Problems via Automated Symptom Matching”, in

Proceedings of the 2nd International Conference on
Autonomic Computing (ICAC 2005), June 2005.

[3] Z. Cao and E.W. Zegura, “Utility max-min: an

application-oriented bandwidth allocation scheme,” in
Proceedings of INFOCOM'99, IEEE, 1999, pp. 793-801.

[4] M. Karlsson, and M. Covell, “Dynamic Black-Box

Performance Model Estimation for Self-Tuning
Regulators”, in Proceedings of the 2nd International
Conference on Autonomic Computing (ICAC 2005),
June 2005.

[5] S.W. Cheng, et al., “Architecture-based self-adaptation in

the presence of multiple objectives,” in Proceedings of
the ICSE International Workshop on Self-adaptation and
self-managing systems (SEAMS 2006), ACM Press,
2006.

[6] F.C. Chu, and J.Y Halpern, “Great Expectations. Part II:

generalized expected utility as a universal decision rule”,
Artificial Intelligence, Elsevier, November 2004, 159(1-
2):pp. 207-229.

[7] R. Das, I. Whalley, and J.O. Kephart, “Utility-based

collaboration among autonomous agents for resource
allocation in data centers”, in Proceedings of the 5th Intl.
Joint Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan, 2006.

[8] W. Dickinson, D. Leon, and A. Podgurski, “Finding

failures by cluster analysis of execution profiles”, in 23rd
International Conference on Software Engineering
(ICSE), Toronto, Ontario, Canada, May 2001

[9] D.E. Irwin, et al., “Balancing Risk and Reward in a

Market-Based Task Service,” in Proceedings of the 13th
IEEE International Symposium on High Performance
Distributed Computing (HPDC-13 '04), IEEE, 2004, pp.
160-169

[10] J.O. Kephart, and D.M. Chess, “the Vision of

Autonomic Computing”, IEEE Computer 36(1): 41-50,
January 2003

[11] J.O. Kephart, and R. Das “Achieving Self-

Management via Utility Function”, IEEE Internet
Computing 11(1):40-48, January 2007.

[12] J.F. Kurose, and R. Simha, “A Microeconomic

Approach to Optimal Resource Allocation in Distributed
Computer Systems”, IEEE Transactions on Computers,
May 1989, 38(5):pp705-717.

[13] A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller,
“Problem diagnosis in large-scale computing
environments”, in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, Tampa, FL., USA, 2006.

[14] R. Patrascu, et al., “New Approaches to

Optimization and Utility Elicitation in Autonomic
Computing,” Proc. National Conference on Artificial
Intelligence, 2005, pp. 240-245.

[15] J. Postel, and J. Reynolds, “File Transfer Protocol

(FTP)”, IETF RFC 959, October 1985, available at:
http://www.ietf.org/rfc/rfc959.txt

[16] A. Quiroz, et al., “Robust Clustering Analysis for

the Management of Self-Monitoring Distributed
Systems,” Journal of Cluster Computing, November 2008

[17] M. Salle and C. Bartolini, “Management by

contract,” Proc. Network Operations and Management
Symposium (NOMS 2004), IEEE/IFIP, 2004, pp. 787-
800.

[18] E. Stehle, M. Shevertalov, P. deGrandis, S.

Mancoridis, and M. Kam, “Task Dependency of User
Perceived Utility in Autonomic VoIP Systems”, in
Proceedings of the International Conference on
Autonomic and Autonomous Systems, (ICAS 2008),
Gosier, Guadeloupe, March 2008

[19] R. Sterrit, and D. Bustard. “A Health-Check Model

for Autonomic Systems Based on a Pulse Monitor”,
Knowledge Engineering Review, 21(3):195-204,
September 2006.

[20] G. Tesauro, “Reinforcement Learning in

Autonomic Computing. A Manifesto and Case Studies,”
IEEE Internet Computing, 11(1):22-30, January 2007..

[21] G. Tesauro, et al., “On the use of hybrid

reinforcement learning for autonomic resource
allocation,” Journal of Cluster Computing, vol. 2007, no.
10, 2007, pp. 287-299.

[22] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das,

“Utility Functions in Autonomic Systems”, in
Proceedings of the International Conference on
Autonomic Computing (ICAC 2004), New York, NY,
USA, May 2004.

[23] X. Wang and H. Schulzrinne, “Pricing network

resources for adaptive applications in a differentiated
services network,” in Proceedings of INFOCOM 2001,
IEEE, 2001, pp. 943-952.

