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Abstract 

 
We present a non-analytic approach to self-

assessment for Autonomic Computing. Our approach 
leverages utility functions, at the level of an autonomic 
application, or even a single task or feature being 
exercised within that application. This paper describes 
the fundamental steps of our approach: 
instrumentation of the application; collection of 
exhaustive samples of runtime data about relevant 
quality attributes of the application, as well as 
characteristics of its runtime environment; elicitation 
of a utility function, through statistical correlation over 
the collected data points; and embedding of code 
corresponding to the equation of the elicited utility 
function within the runtime of the application, which 
enables online evaluation of utility values. To illustrate 
our elicitation method, as well as the prototype of our 
framework for instrumentation, monitoring, and utility 
function embedding/evaluation, we describe our 
experience with two different case studies, and discuss 
their results and implications. 
 
 
1. Introduction 
 

Autonomic software systems should be able to 
adapt to a wide range of conditions, including 
unforeseen and unexpected events that may occur as 
the system is operating. Such events may often cause 
the most critical in-the-field faults, since, by definition, 
they have not been accounted for, or discovered, 
during the various phases of the engineering process. It 
is therefore arguable that the significant additional cost 
and complexity incurred in designing and 
implementing autonomic mechanisms for a software 
system may at times be justifiable only in the case 
where they provide some level of protection from 
unpredictable conditions. However, self-adaptive 
facilities are often designed to cover only certain 
classes of expected or likely conditions, and designing 

for the unexpected remains one major challenge in the 
engineering of autonomic systems.  

This paper presents an approach to attack that 
challenge, related to the area of self-assessment, a 
critical pre-requisite for being able to take decisions 
upon adaptations that an autonomic system may need 
to enact. Self-assessment requires that the autonomic 
system must possess means to recognize its operational 
state (or at least some salient properties of it), and 
predicate upon that state, in order to evaluate whether 
it is satisfactory, or should rather be changed. 

Many current techniques pursuing self-assessment 
are – in strict accord with the MAPE-K reference 
architecture for autonomic systems [10] - analytic in 
nature: for example, they may monitor the occurrence 
of certain runtime conditions within the system, as in 
[2], and try to diagnose their root cause, as in [13].  

We propose a non-analytic approach that leverages 
the concept of application-level utility, an abstraction 
that captures in a single scalar value the salient 
properties of an application, with regards to its 
operational requirements, such as health, value, or 
quality of service. In practice, our approach for utility-
based self-assessment is three-phased. Firstly, by 
means of instrumentation, we collect runtime data at 
two distinct levels: an array of measures sampling the 
environmental operating conditions for the application; 
and, in parallel, another set of quantitative 
characteristics of application-level quality and 
performance. We then elicit a utility function for the 
application, through the statistical correlation of the 
data collected at those levels. Finally, we turn utility 
into an intrinsic characteristic of the application itself, 
by using meta-programming techniques to embed the 
utility function in its runtime libraries; that enables 
online evaluation of application utility, which in turn 
lays an objective basis for self-assessment and 
decision-making. 

In the remainder of the paper we describe our 
method, with the help of various experiments we have 
carried out, whose results we also present. We discuss 



 

 

the engineering lessons we have learned in the process, 
with implications in particular to embedding elicited 
utility functions in legacy applications. Finally, we 
outline further research opportunities on application-
level utility for autonomic computing. But, first, we 
briefly review the concepts of utility and utility 
functions, and discuss their usage in Autonomic 
Computing. 
 
2. Utility in Autonomic Computing 
 

The concept of utility has it roots in Utilitarian 
philosophy, and its earliest application perhaps in the 
field of microeconomics, where it indicates the 
satisfaction generated from owning or consuming a 
good or service. Computer Science has borrowed the 
term, and assigned similar semantics to it. For 
example, in Artificial Intelligence, expected utility has 
been indicated as a unifying principle for decision-
making rules [6], thus highlighting how utility 
expresses the level of satisfaction of one’s goals. 
Utility has been employed in a variety of other 
computing areas, and even just an overview would 
easily exceed our space limitations. To offer just a few 
examples, in communication systems utility can be 
used to optimize the consumption [3], or pricing [23], 
of networking resources. In distributed computing, it 
can for instance arbitrate the allocation of shared data 
and other resources among concurrent processes [12]. 

In all cases, it is essential to be able to make the 
utility abstraction operational. That translates into 
devising a utility function that can capture the 
definition - and compute values of - utility in the 
context at hand. A utility function in the form U = f(V) 
denotes how utility depends on a vector V[s0, …, sn] of 
attributes that capture the state of the system and its 
environment; the function f maps that - possibly large - 
vector characterizing the running system to a single 
scalar value U, conventionally in the [0,1] range. 

In Autonomic Computing, as mentioned in [11], 
utility functions become particularly attractive because 
of their ability to quantitatively attribute points in the 
system state space. They thus provide an objective and 
quantitative basis for sound automated decision-
making, and they can tie those decisions to high-level 
conceptual requirements, concerns and goals. 

A utility function can for example guide automated 
agents to devise or compare self-optimization 
strategies, in order to ensure certain levels of 
performance, or even assign monetary value to the 
operation of a system. A common self-optimization 
context in which utility has been applied is the 
automated management of large, multi-application 
computing infrastructures, like data centers. Walsh et 

al. [22], and Das et al. [7], among several others, have 
shown how utility functions can guide resources 
allocation in a data center, based on the evaluation of 
the (economic) value of the resources being 
provisioned for hosted applications, and of those 
applications for their owners or users. A different self-
optimization scenario is proposed by Cheng et al [5], in 
which utility evaluation enables the choice among 
alternative adaptation strategies for changing the 
configuration of the architecture of a software system 
at runtime. 

Notice that in many current approaches, including 
the ones above, the definition of the utility functions is 
not a direct concern for the autonomic system itself. 
Utility functions are often manually elicited with the 
help of domain experts or application users [9], or from 
contractual agreements, such as SLAs [17]. However, 
objective and (at least partially) automated elicitation is 
particularly desirable in Autonomic Computing, 
because it leads to a function that faithfully fits the 
recorded usage and intended purpose of the target 
system. Approaches based on negotiation among 
multiple parties have been used to automate the 
elicitation of utility functions, limited to the resources 
allocation scenario [1] [14]. 

The focus of our work is quite different from what 
we have described so far, in terms of purpose, as well 
as scope. We are interested in the non-analytic self-
assessment of a single executing application, or even a 
single recognizable service or task executed by that 
application. Several other non-analytic approaches 
exist, based, e.g., on clustering [8] [16], which are able 
to detect anomalous (i.e. uncommon) behavior. 
However, those cannot quantitatively attribute 
anomalies. Application-level utility functions can 
automatically assign a value to a current state of 
operation of the application or task, denoting, for 
instance, its health or performance. In that sense, our 
work is perhaps most similar to that of Sterritt and 
Bustard [19], which also establishes a framework for 
quantitative (although discrete) self-assessment, by 
means of a multi-level scalar, called a “pulse”. 
However, the definition of pulse levels for an 
application, with their semantics and thresholds, is left 
to the implementer.  

We are interested, instead, also in the objective 
elicitation of utility functions, that are tightly linked to 
observable runtime properties. To that end, we employ 
a statistics-based approach, which is discussed below. 
 
3. Elicitation of application-level utility 
 

In order to attribute utility semantics to a given 
application, we conduct a process of correlation and 



 

 

statistical fit between a vector of attributes of the 
application behavior, and another vector of 
characteristics of its runtime environment. 

To illustrate that process, we briefly discuss hereby 
the set-up and outcome of a case study on IP 
teleconferencing, which was the first author’s initial 
foray in this field. In that case study, which is 
thoroughly described in [18], the collection of 
application-level data was carried out based upon 
subjective evaluation by users on their ability and 
satisfaction in carrying out a variety of 
communication-related tasks with the support of the 
VoIP application (user-perceived utility). Those utility 
values were then correlated to metrics of the network 
channels used by the application (environment 
characteristics, namely, bandwidth, latency and packet 
loss rate), collected from within a testbed environment 
in which such network conditions could be 
manipulated and sampled. By throttling those 
conditions and running a large number of experiments, 
it was possible to derive mappings between those 
environment-level characteristics and the utility of the 
VoIP application as seen by its users. The experiments 
not only allowed the synthesis of utility functions, but 
also determined how the sensitivity of each task to the 
varying conditions is different; hence different utility 
functions were devised for the same application, on a 
per-task basis.  

Based on the experience of [18], we have started to 
extend our statistical elicitation technique, to cases in 
which the utility information is not provided by users. 
Our goal is to substitute user perception with objective 
measures of behavioral parameters of the application, 
as observed, for example, by any client system using 
that application’s services. To achieve that, we 
instrument the application, and sample a chosen set of 
salient application-level parameters, in conjunction 
with environment characteristics. We then try to 
correlate application-level and environment-level 
measures: we calculate various moments of the 
multidimensional graph generated from the 
environment-level measures, and curve-fit it to the 
corresponding application-level graph. The equation 
that produces the best fit becomes our utility function, 
which allows us to assign a utility scalar to the running 
application, by simply monitoring the vector of 
environment- and application-level characteristics 
included in that equation.  

Let us consider, for example, the utility function for 
downloading a file with an FTP service (FTP utility is 
discussed in detail as a case study in Section 5.1). For 
such a task, the most significant application-level 
measure is throughput, as seen by the FTP client 
requesting the transfer. That effectively incorporates 
and abstracts a number of phenomena that occur within 

the FTP networking environment, such as protocol 
handshaking and control flow, transfer error, packet 
loss and retransmission, etc.; but it also depends on 
other environmental factors, such as the raw 
throughput and the latency provided by the network 
socket, and their fluctuations over the time of the 
transfer. We observe those environment metrics, as 
well as throughput as seen from the FTP client, for a 
large number of FTP test runs. We employ a controlled 
testbed that enables us to collect at corresponding time 
intervals those tuples (or data points), as well as vary 
the running conditions from test run to test run, so that 
we can crawl systematically through the multi-
dimensional operation space constituted by the metrics 
being observed. We then proceed to synthesize offline 
the equation for the application-level utility for FTP 
download, based upon the collected data points. 

A critical aspect of our technique is the choice of 
parameters to be observed, which remains application- 
or even task-specific. However, an advantage of our 
approach over analytic techniques for self-assessment 
is that – once defined – utility functions do not need to 
monitor any application-specific events and patterns 
thereof, nor develop any diagnostic capability to 
prove/disprove hypotheses that are specific to the 
application and those patterns. A utility-based self-
assessment approach may thus require significantly 
less domain knowledge than most analytic techniques, 
which is advantageous, since – as observed for 
example by Tesauro [20] - the acquisition, modeling 
and maintenance of domain knowledge in Autonomic 
Computing is itself an open research issue, and tends to 
be time-consuming and hard to generalize. Another 
merit of our approach is that data collection can be 
fully automated through instrumentation of the 
application at hand, thus enabling collection in 
contexts that closely match its natural running 
conditions ion. Moreover, once our utility function are 
synthesized, they are already tied to measures that are 
inherently observable: therefore, the same 
instrumentation previously used for the elicitation 
process can be deployed within a utility-aware version 
of the application, to compute its utility as it operates 
in the field. 
 
4. Making software applications utility-
aware 

 
We have developed a system of code annotations 

that supports both the data collection and elicitation 
process, as well as the embedding of the resulting 
utility function within the runtime code of the 
application, at the same points where the data was 
collected. Our annotations intercept the program 



 

 

execution upon entering marked functions in the target 
application. To the target application, those function 
calls seem semantically identical, however a 
background process is triggered by the annotation, 
which monitors and collects the parameters of interest, 
and calculates utility on the basis of those parameters. 

For our prototype, we selected Python as the target 
language, for its advanced introspection mechanisms 
and its ability to foster meta-level programming 
functionality. We christened our prototype Aupy, 
which stands for “application utility with Python”. 

In a first version of Aupy, our annotations were 
implemented using a series of Python decorators, 
associated to method definitions. Those decorators 
trigger utility-specific code (either for monitoring or 
utility computation), and specify whether that code 
should be executed before the target method, after the 
target method, before and after the target method, or 
concurrently, that is, in the background while the target 
method performs its operations. The table in Figure 1 
provides a synopsis of Aupy annotations. 

 

Figure 1: Aupy annotations. 

In a second version of Aupy, we migrated from 
Python decorators to Python contexts. Contexts, and 
the scoping constructs they enable, allowed us to 
associate utility to specific blocks of code, in addition 
to entire methods. Annotations at the method level 
remain very convenient to make legacy systems utility-
aware, since it is possible to associate them to – and 
then seamlessly intercept – also methods defined 
within and imported from libraries. However, context-
based operations give us better control: as the same 
primitives for data collection and utility computation 
are available to the new version of Aupy, we can now 
work at finer levels of granularity. Another 
advancement is that utility function can now be 
composed, thanks to the combined properties of the 
context construct and Python introspection. That way, 
we can reuse already defined utility functions to form 
new ones for a given context. Finally, we can pass 
dynamic arguments and functions into a context, 
enabling us to modify the path of execution and thus 
introduce additional callbacks, embedded contexts, and 
conditional utility functions. Although similar features 
could have been engineered also within our decorators, 
they are much more easily and naturally implemented 
and integrated in contexts.  

Our mechanism for method interception allows for the 
adaptation of legacy systems to be retrofitted with 
utility-aware behaviors, but also supports the 
development of new systems with the same 
capabilities.  This is further illustrated in the case 
studies that follow. 
 
5. Case studies 
 
5.1 FTP download 
 

The goal of this case study was to validate our 
approach to elicitation and embedding, as well as the 
Aupy annotation framework, within a well-understood 
scenario. We chose the FTP protocol, since it is a well-
known and widely studied system, with a clear 
principled parameter that can be used to represent the 
utility of the application, that is, data throughput. 

This case study was conducted using a standard 
FTP client written in Python and conforming to the 
FTP RFC [15]. The FTP client was instrumented to 
record its application-level throughput, as well as CPU 
utilization, and RAM usage. From the networking 
environment, we recorded raw channel throughput and 
inter-arrival time, as measured on the socket of the 
client machine. The tasks we profiled with data 

INTENT SYNTAX NOTES 
Monitor operation of the annotated code @monitor(*args) *args is a dynamic list populated with 

utility functions. If None is passed, it 
will use all functions defined with in the 
same scope as the annotated code. 

Pre-evaluated utility function @pre_utility Evaluation occurs upon entering the 
annotated code. 

Post-evaluated utility function @post_utility Evaluation happens upon leaving the 
annotated code. 

Enveloping utility function @utility Evaluation occurs upon entering, and 
again after leaving, the annotated code. 

Concurrently evaluated utility function @concurrent_utility Evaluation occurs concurrently with the 
execution of the annotated code. 



 

 

collection were the download of one large multi-
gigabyte file (in the following, FTP-bulk experiment), 
and the consecutive download of multiple one-
megabyte files (FTP-small experiment).  

First of all, an annotated version of Python FTP 
library was constructed. To accomplish that, a subclass 
of the FTP class in that library was developed, and we 
used Aupy annotations to mark the subclass methods 
implementing the FTP commands as code to be 
monitored. As shown in the example below, the 
annotated methods simply wrap pass-through 
statements that invoke the same functionality in the 
original FTPs library. 

   @monitor(None) 
    def ntransfercmd(self, command): 
       return super(SafeFTP, 

   self).ntransfercmd(command) 
Next, a concurrent utility function was developed, 

to capture and log data at the application as well as at 
the environment level. 

    @concurrent_utility 
    def ftp_utility(self): 
 # monitoring code below  

... 
The effect of  this set of annotations is that, as the 

monitored transfer command gets executed, Aupy 
automatically finds all the utility functions defined 
within the same language scope - in this example only 
ftp_utility() is available - and run them as prescribed 
by their @utility annotation.  

Finally, we hijacked the original library and 
substituted it with the annotated version: that is easily 
accomplished due to the possibility in Python to import 
library classes under alternate names, to preserve and 
maintain control of the namespace. The code below 
overrides the namespace of the original FTP library. 

# from ftplib import FTP 
from aupy_ftp import SafeFTP as FTP 
The instrumented FTP client application was then 

run on a testbed, comprised of two Linux endpoint 
machines and a BSD machine, which utilized the 
dummynet1 utility to simulate a variety of network 
conditions for our test runs. A single test run is a 
complete file transfer scenario for a dummynet 
network setup, which is comprised of given values for 
bandwidth, latency, and packet loss settings. The 
clocks on all the machines were synchronized before 
each test run using NTP. A back channel was used for 
logging and administrative actions, allowing the 
network channel for the FTP experiments to be fully 
dedicated to transfers. 

                                                             
1 See http://info.iet.unipi.it/~luigi/ip_dummynet/ 

We carried out a set of 125 test runs and repeated it 
three times for both the FTP-bulk and FTP-small 
experiments. During each test run, measurements of 
environmental and application attributes were recorded 
each second. We then aggregated the data and 
performed data interpolation, resulting in an equation 
that estimates client-side FTP application utility purely 
on the basis of environment-level metrics, i.e., packet 
inter-arrival time and channel throughput. 

From the process above, we could clearly see how –
like in our pervious experience with VoIP [18] - FTP 
application utility is task-dependent: the equations we 
synthesized for the bulk-FTP and small-FTP 
experiments differ significantly, as shown in Figure 2. 

! 

U
bulk

= a
1
X
1

+ a
2
X
2

+ a
4
X
4

+ a
5
X
5

+ b
1
Y
1

+ b
2
Y
2

+ b
5
Y
5

U
small

= a
4
X
4

+ a
5
X
5

+ b
1
Y
1

+ b
2
Y
2

+ b
4
Y
4

+ b
5
Y
5

 

Legend 

Xi : ith statistical moment of packet inter-arrival time 

Yi : ith statistical moment of socket throughput 

FTP-bulk FTP-small 

a1 -175150.7079 a1 0 

a2 -145163.8736 a2 0 

a3 0 a3 0 

a4 -579.7485 a4 1028.3839 

a5 2.0136 a5 -157.4976 

b1 0.9241 b1 0.56368 

b2 -0.2341 b2 -0.42717 

b3 0 b3 0 

b4 0 b4 612.90247 

b5 -0.17755 b5 15.18621 

Figure 2: utility equations for the FTP case study. 

Our empirical verification confirmed how estimated 
utility, i.e., the values of utility computed through the 
above equations, approximates well the monitored 
values of throughput for the FTP client (observed 
utility) on corresponding data points. We show in 
Figure 3 and Figure 4 the plots obtained from the FTP-
bulk experiment. 

The next step was to embed the elicited functions in 
the FTP client. For that, we simply had to enhance the 
function ftp_utility, which previously simply used to 
log our monitored metrics, with a call to Python code 
representing the utility equations. We also carried out 
further validation, since we continued to independently 
log the FTP client throughput, to keep the observed vs. 
estimated comparison active online. The same results 
reported above were confirmed in this phase. 

 



 

 

 
Figure 3: observed FTP utility. 

 
Figure 4: estimated FTP utility. 



 

 

 
5.2 Log explosion  
 

The goal of this case study was to investigate 
application-level utility to a domain different from 
protocol-based applications (such as FTP or even 
VoIP), and to experiment with our technique to solve a 
real-world problem related to the management of IT 
infrastructure. The problem at hand regards certain 
faults that can cause a system to consume a global 
resource rapidly and unexpectedly. As a consequence, 
other functioning parts of the system are starved, which 
usually results in complete system failure. Such a 
crippling problem can arise for many disparate reasons 
in a variety of computing systems, in the small as well 
as in the large. 

We have been able to work with one specific form 
of that problem, occurring within a popular Python-
powered Web site (more than 1 million unique views 
per day,): a “log explosion”, which caused the log 
aggregation and rotation subsystem of the Web site 
infrastructure to be overwhelmed with hard disk writes, 
rapidly and at unpredictable junctures. System data on 
those events was collected and analyzed, to discover 
that a round-robin scheduler in charge of server-side 
cache replication within a caching cluster would at 
times fail and remain “stuck” on a given node.  Every 
attempt the scheduler would make to move to the next 
node would fail, resulting in a log entry. Very quickly 
the log would exhaust disk space, to the point that the 
site would no longer be able to accept new connections 
(which requires logging to be functional). Also 
attempts to log onto the nodes by other means, like an 
SSH session, would fail, since there would be no room 
on the disk to log the session information. Existing 
monitoring software for the site could not detect this 
problem in time to avoid a complete system failure. 
We therefore decided to try to use our framework to 
recognize log explosions as they happen, without 
having to investigate or resolve the root cause of that 
faulty behavior. Our hypothesis was that by monitoring 
the rates and accelerations of log writes, we could 
come up with a utility function for the logging facility 
that would tell us when an explosion was about to 
occur. 

Our testbed for this experiment was simple. One 
machine was used to run a clean-room re-engineered 
version of the faulty round-robin scheduler.  The 
system rotated through logical representations of 
nodes, one of which was injected to cause a fault.  
Additionally, in the experiment, log information was 
also piped to standard-out to watch the system live. It 
was pre-determined that on every twentieth rotation a 
fault would be triggered on one of the nodes, causing it 
to become unresponsive to all scheduler requests. 

We also embedded Aupy code within the scheduler, 
to capture the rate of log writes as well as their 
acceleration rate. Under normal operating conditions, 
the recorded log writes rate was consistently low, in 
the order of one write/sec. Our concurrent monitors 
were set to monitor at the same interval. During 
repeated experiments, when an explosion occurred, log 
write rates increased two orders of magnitude in the 
first second, to roughly 720-780 writes/sec, and again 
two orders of magnitude in the following second to 
about 15000 writes/sec. In our particular testing 
environment, hardware limits for disk write access 
were reached within the third second. Acceleration 
appears therefore to be exponential, which shows the 
extremity of the phenomenon. Consequently, its 
representation in terms of a utility function produced a 
step-wise function dropping from 1 to 0 in the event of 
an explosion. 

Whereas we had hoped for a utility profile, which 
could have possibly provided more preliminary 
evidence of the build-up of the phenomenon, the step-
wise function, once embedded in the system allowed 
us to recognize log explosions within one second from 
the triggering of the node fault. We could thus easily 
put into place a provision to block the round-robin 
scheduler in time, and stop its runaway logging. We 
intend to carry out more work on this particular 
example, to gain further insight on the early assessment 
of explosive resource consumption problems, . 
 
6. Discussion 
 
6.1 Lessons learned 
 

Our work has provided us with a number of insights 
on application-level utility for autonomic self-
assessment. First of all, we have gained an 
understanding of a process to elicit utility functions by 
monitoring the behavior of applications, and their 
environment. That process is repeatable and requires 
only a modicum of application-specific knowledge. 
Although we have experience only with carrying out 
that process in lab conditions, and in part (i.e. the 
delicate statistical analysis phase) offline, it seems 
feasible to consider it as a basis for working toward 
online, automated synthesis of utility functions. We 
expand on this matter as a possible direction for future 
research in Section 6.2. 

Our case studies have shown how utility at the 
application level is task-dependent, and a number of 
consequences descend from that. Since an array of 
utility functions apply to the same system, and, in 
some cases, such as our case study on FTP download, 
to the same application feature, having elicited those 



 

 

distinct utility functions is not per se sufficient: one 
must also have the means to select them 
opportunistically, based on the context of the task 
being performed. That has engineering implications, 
and has become one of the requirements driving our 
Aupy framework. Our latest prototype allows to 
associate multiple (possibly concurrent) utility 
functions to the same code block. It also accounts for 
conditional triggering and utility function composition, 
via the construct of Python contexts. 

The task-dependent nature of application utility also 
helps understanding how our method fits naturally well 
certain specific classes of applications. One example is 
constituted by communication-oriented systems, which  
are typically based upon protocols that codify and 
restrict what the system is intended for. That facilitates 
the extraction the system’s salient features, and can 
guide the elicitation of appropriate utility functions for 
the application tasks that reify those features. Similar 
considerations often apply to infrastructure-level 
facilities that - like in on our case study on server 
logging – are characterized by a limited set of specific, 
self-contained services they provide to the computing 
environment as a whole. In the case of other classes of 
applications, e.g., enterprise systems, the synthesis of 
utility functions across the spectrum of all user tasks 
enabled by their possibly very diverse, heterogeneous 
services can become unfeasible, in particular in the 
absence of automated support in the elicitation process. 

An advantage of the fine-grained utility abstractions 
required and at the same time enabled by our 
framework is a viable approach to comparable, 
interoperable and composable  definitions of “health” 
for different autonomic applications, which descends 
from the unit-less and summative properties of utility 
functions. It is well known how this applies at a 
macroscopic level, e.g., for multiple applications 
operating within the same provisioning infrastructure 
(leading to a view of utility for the whole computing 
environment, as discussed in [22]). It applies as well at 
the micro-level of different tasks being performed 
within the same application: for example, related to our 
FTP case study, the utility of the FTP download 
service as a whole could be expressed as a combination 
of the utility values recorded for bulk downloads and 
small download tasks as they occur. Things are 
analogous in the increasingly common case of 
component-based applications, or even systems-of-
systems, in which different pieces of legacy, COTS or 
otherwise third-party functionality are integrated into a 
new application. If all components could be 
characterized with embedded utility functions, the 
utility of the overall composite system could be 
derived by combining the utility values recorded for 
each of the various components. 

Lastly, we have been able to test the limits of our 
hypothesis that the utility abstraction can lead to non-
analytic self-assessment. Domain-specific knowledge 
plays a role in our approach, but only in the initial data 
collection phase, for the selection of the basic 
characteristics of the application or task that must be 
monitored. Past that phase, the whole process of 
function elicitation and embedding, as well as utility 
computation, remains application-agnostic. We see this 
as a major factor enabling the assessment of the 
application under scrutiny, no matter how unexpected 
or unpredictable its state of operation can become. 
 
6.2 Ongoing and future work 
 

A central part of our approach is the process for the 
elicitation of utility functions, which requires the 
collection of a large amount of data and its statistical 
analysis. Although data collection is automated,  this is 
currently a time-consuming process that occurs in the 
lab, by means of a testbed environment that needs to be 
configured for each application. Moreover, the 
statistical analysis occurs offline, and can be rather 
labor-intensive. This is an issue that must be resolved, 
in order to use utility functions for self-assessment 
extensively (that is, for a diverse range of 
applications), and at the correct level of granularity 
(that is, for the distinct features and tasks enabled by a 
given application). We are now considering how to 
attack that issue.  

First of all, we want to move from in-the-lab to in-
the-field data collection. With Aupy, it is easy to 
deploy in the field an instrumented version of the 
application under scrutiny, so that its various features 
can be exercised in regular working conditions. 
However, in that case, it may be difficult to produce an 
exhaustive map of evenly distributed data points, to be 
fed to our statistical correlation analysis. It is likely 
that many of the collected data points would tend to 
gather in one or more dense areas within that space, 
with other data points constituting outliers or 
operational anomalies. Consequently, it might be 
unfeasible to synthesize an equation that is valid 
outside of the main operation areas, and which covers 
and accurately attributes utility to anomalous data 
points. On the other hand, we could identify and tell 
apart different operation areas by analyzing in-the-field 
data with clustering techniques – as shown for instance 
by Quiroz et al. [16] - and possibly characterize those 
operation areas in terms of different application 
features being exercised. That would easily lead to the 
elicitation of distinct utility functions for each of them. 
Drawing an example from our FTP case study, tasks 
like downloading of a single large multi-GB file, and 
downloading of multiple 1 MB files would correspond 



 

 

to two distinct, recognizable data point regions, and 
could be treated independently from one another. 

We also plan to leverage some AI-based techniques, 
to advance towards automation of utility function 
elicitation. For example, cooperative negotiation has 
been already applied to Autonomic Computing 
contexts, in which overall utility is not known or 
cannot be expressed a priori, and must be elicited 
incrementally from multiple interested parties [1] [14]. 
To apply and adapt those earlier results to our context, 
we could employ multiple evaluating agents, each 
defining its utility in terms of a single axis of the multi-
dimensional space being monitored. Each agent would 
compute its local utility values for a number of sample 
requests, and the aggregation of the various utility 
perspectives thus generated would be used to compute 
the overall utility function. Further insight on this 
matter could come from the field of automated 
learning. We plan to experiment with supervised and 
unsupervised learning techniques, to help deriving 
utility functions from the potentially large and high-
dimensional space monitored through Aupy. 

Finally, since a utility function can be regarded as a 
multi-dimensional map of application value, in which 
the axes represent environmental as well as application 
attributes, and assuming a management infrastructure 
that is able to actuate some subset of those attributes 
(at either level), it is conceivable to elaborate 
actionable trajectories within that map, to move an 
application from a low-utility state towards a higher-
utility state. A somewhat similar idea has been pursued 
in [4]. To efficiently calculate those trajectories, we 
could again leverage machine learning techniques, in 
particular Reinforcement Learning (RL). RL has been 
successfully used for Autonomic Computing in the 
recent past to synthesize policies for decision-making, 
aiming once again at self-optimization [20] [21]. A key 
concept in RL is “reward”, a scalar that valuates the 
observed consequence of a decision, and which the 
learning agent making decisions aims to maximize. 
The concept of utility naturally maps onto RL rewards; 
thus, having elicited a utility function, it is easy to 
compute rewards for trajectories within the state space 
of the application, and segments within a trajectory. 

With that development, utility-based methods could 
be applied in Autonomic Computing not only to non-
analytic self-assessment (i.e., within the 
reactive/introspective “Monitor+Analyze” portion of 
the MAPE control loop), but also to the equally 
important area of non-analytic, automated decision-
making. Such a technique could thus enable the design 
of provisions for the “Plan+Execute” half of the MAPE 
loop devoted to proactive adaptation, which could 
potentially cope with unexpected events and 
conditions. 

 
7. Conclusions 
 

This paper has presents a method and a tool for the 
elicitation of application-level utility functions, which 
can be subsequently employed for autonomic self-
assessment. Our work has provided us with an 
understanding of an elicitation process based on the 
statistical analysis of measurable data that is collected 
at two levels: the application under scrutiny, and the 
running environment hosting that application. We have 
also acquired know-how on the engineering of a 
framework for data monitoring and collection, as well 
as the embedding of elicited utility functions in the 
runtime code, which leads to seamless computation of 
utility as the applications operates.  We have developed 
the Aupy prototype for such a framework, and 
experimented with it in two case studies from diverse 
application domains. Through those case studies we 
have acquired insight on the task-based nature of 
application-level utility, which has prompted us to 
include fine-grained, block-wise support for utility 
functions in our framework. 

This work shows how application-level utility is a 
viable abstraction for the non-analytic self-assessment 
of autonomic systems, and can be made operational for 
newly developed as well as legacy systems. 

Finally, this can be a preliminary step to conduct 
further research on application-level utility in 
Autonomic Computing, regarding the fully automated, 
in-the-field elicitation of utility functions, as well as 
the possibility to leverage utility information for 
automated and non-analytic decision-making on 
application adaptation. 
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