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Abstract
A Recursive Implementation of the Dimensionless FFT

Xu Xu
Jeremy R. Johnson

The discrete Fourier transform (DFT) is an important tool in many branches of

science and engineering, and has been studied extensively. For many applications, it

is important to have an implementation of the DFT that is as fast as possible.

Recently high performance packages for computing the fast Fourier transform

(FFT) have been developed using automatic code generation and an adaptable frame-

work for optimizing the implementation to different computing platforms. FFTW is

a well known package that follows this approach and is currently one of the fastest

implementations of the FFT available.

FFTW utilizes a recursive formulation of the FFT that employs different break-

down strategies and a collection of highly tuned base cases called codelets. In this

work, we extend FFTW to compute arbitrary multidimensional DFTs using a mod-

ification of the one-dimensional code provided by FFTW. The modification is based

on the concept of a dimensionless FFT which allows a multi-dimensional DFT to be

obtained from a one-dimensional FFT simply be reordering the inputs and modifying

the multiplicative constants (twiddle factors) used in the program.
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Chapter 1: Introduction

The divide and conquer construction used by the fast Fourier transform (FFT) allows

a discrete Fourier transform (DFT) of size mn to be computed using n transforms

of size m followed by m transforms of size n [1]. This construction requires that the

input data be accessed at stride and the intermediate data obtained after computing

the n transforms of size m be scaled by the so called “twiddle factors”. Multi-

dimensional DFTs are normally computed using one-dimensional FFTs along each

of the dimensions. For example, let X(a, b) with 0 ≤ a < m and 0 ≤ b < n be a

function of two variable stored in an m×n array. The two-dimensional m×n DFT of

X can be calculated by applying m one-dimensional n-point DFTs to the rows of X

followed by n one-dimensional m-point DFTs to the columns. The one-dimensional

DFTs are computed using the FFT. This approach, called the row-column algorithm,

can be generalized to DFTs with arbitrarily many dimensions; however, it has the

shortcoming that the divide and conquer construction used by the FFT can only be

applied separately to the number of points in each dimension. It does not allow the use

of smaller transforms of size equal to an arbitrary factor of the number of data points.

The dimensionless FFT [2] allows a multi-dimensional DFT of total size N = RS

to be computed using R multi-dimensional DFTs of size S followed by S multi-

dimensional DFTs of size R independent of dimension. This is identical to the one-

dimensional construction except that a slightly different input permutation is required

and the values of the twiddle factors are different. The permutation and twiddle

factors depend on the dimension. The original presentation of the dimensionless FFT

was based on an iterative algorithm for computing the FFT and was motivated by

the desire to produce FFT hardware that could be used for one, two, and three

dimensional transforms [2, 7].

Recently there has been efforts to automatically optimize the performance of im-
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portant signal processing routines such as the FFT [6, 8, 11]. These approaches

search for a good decomposition (breakdown strategy) of the FFT in an effort to

best utilize the number of registers, cache, and other features of the underlying hard-

ware. A good breakdown can be far more important than saving a few arithmetic

operations. The use of the dimensionless FFT allows decomposition sizes that are

not available in the row-column algorithm and can provide improved performance for

many multi-dimensional DFTs.

This thesis shows that FFTW [6], one of the fastest public domain FFT packages,

can be modified to support a recursive implementation of the dimensionless FFT.

FFTW can use many different recursive divide and conquer strategies, and dynamic

programming is used to empirically determine the “best” strategy. The desired strat-

egy is stored in a tree data structure called a plan. The plan also stores the necessary

twiddle factors. An executor uses the plan to compute the FFT from a collection of

small FFTs, called codelets, implemented using straight-line code. To support the

dimensionless FFT, extra information must be stored in the plan to keep track of

the dimension of the various DFTs that arise, and a set of multi-dimensional FFT

codelets must be provided. The plan generator must be extended to produce the

twiddle factors required by the dimensionless FFT, and the executor must support

one additional parameter needed for the generalized permutations that can arise.

These changes were incorporated into FFTW and empirical data is presented show-

ing the potential for improved performance as compared to the row-column algorithm

currently provided in FFTW.

The remainder of this thesis discusses these ideas in detail. Chapter 2 derives a

recursive formulation of the dimensionless FFT, Chapter 3 introduces the structure

of FFTW. The modifications to FFTW to implement the dimensionless FFT are

described in Chapter 4. Chapter 5 introduces the SPIRAL system and shows how

to use it to build the dimensionless FFT codelet library. The performance data is
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provided in Chapter 6 and the conclusion is given in Chapter 7.
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Chapter 2: The Dimensionless Fast Fourier Transform (FFT)

This chapter reviews the DFT and the FFT and presents a generalization of the FFT,

called the dimensionless FFT, which applies to multi-dimensional DFTs. The FFT is

presented using matrix notation because the dimensionless FFT is most easily stated

and defined using this formulation (compare Theorem 1 and 2).

2.1 The Multi-Dimensional Discrete Fourier Transform (DFT)

This section defines the multi-dimensional DFT as a matrix-vector product. Matrix

notation and operators needed later are reviewed and defined.

2.1.1 Matrix/Vector Notation

The (k, j) entry of a matrix A is denoted by either akj or A(k, j). It is convenient to

index vectors and matrices starting with zero. For example,

A =







a00 a01 a02

a10 a11 a12






.

The transpose of a matrix A is denoted by AT . The colon notation is used to access

elements with a given stride.

Definition 1 (Colon notation) Let x be a column vector with n elements, and

u ≤ v ≤ n, then

x(u : k : v) = (xu, xu+k, · · · , xu+pk)
T (2.1)

where u + pk ≤ v < u + (p + 1)k.
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The diagonal matrix whose entries are a1, a2, · · · , an is denoted as diag(a1, a2, · · · , an).

For example,

diag(1, 2, 3, 4) =



















1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4



















.

The inverse of a nonsingular matrix A is denoted by A−1, and the n × n identity

matrix is denoted by In.

2.1.2 Matrix Operations

The direct sum and tensor product of matrices are defined for later use.

Definition 2 (The Direct Sum) Let A0, · · · , AR−1 be matrices. The direct sum of

A0, · · · , AR−1 is the block diagonal matrix

R−1
⊕

i=0

Ai = diag(A0, A1, · · · , AR−1).

Definition 3 (Tensor product) Let A be an m×n matrix and B be a p×q matrix.

The tensor product A ⊗ B is the mp × nq block matrix

A ⊗ B =













a0,0B · · · a0,q−1B

...
. . .

...

ap−1,0B · · · ap−1,q−1B













(2.2)

The tensor product has the following properties:

1. If A, B, C and D are matrices with compatible dimensions, then (A ⊗ B)(C ⊗

D) = (AC) ⊗ (BD).

2. If A, B and C are matrices, then (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

3. If P and Q are permutation matrices, then so is P ⊗ Q.
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4. If Ia and Ib are identical matrices with size a and b, respectively, then Ia ⊗ Ib =

Iab.

A proof of these properties is given in [2].

2.1.3 The Discrete Fourier Transform

Definition 4 (Discrete Fourier Transform) The Discrete Fourier Transform (DFT)

of the discrete function X(a), 0 ≤ a < N , is defined by

Y (b) =

N−1
∑

a=0

ωab
N X(a), (2.3)

where ωN = e2πi/N .

If the function X(a) and Y (b) are represented by column vectors x and y of size N ,

Equation 2.3 can be rewritten as

y = FNx, (2.4)

where FN is the N × N DFT matrix, whose (i, j) entry Fi,j = ωij
N , 0 ≤ i, j < N . For

example

F2 =







1 1

1 −1






, F4 =



















1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i



















,

F8 =















































1 1 1 1 1 1 1 1

1 ω8 i ω3
8 −1 ω5

8 −i ω7
8

1 i −1 −i 1 i −1 −i

1 ω3
8 −i ω8 −1 ω7

8 i ω5
8

1 −1 1 −1 1 −1 1 −1

1 ω5
8 i ω7

8 −1 ω8 −i ω3
8

1 −i −1 i 1 −i −1 i

1 ω7
8 −i ω5

8 −1 ω3
8 i ω8















































.
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2.1.4 The Multi-Dimensional DFT

Definition 5 (Multi-dimensional DFT) Let X(a1, · · · , at) to be a function of t

variables, where 0 ≤ a1 < n1, · · · , 0 ≤ at < nt. The t-dimensional DFT of X is

defined by

Y (b1, · · · , bt) =
∑

0≤a1<n1,···0≤at<nt

e2πia1b1/n1 · · · e2πiatbt/ntX(a1, · · · , at)

=
∑

0≤a1<n1

e2πia1b1/n1 · · ·
∑

0≤at−1<nt−1

e2πiat−1bt−1/nt−1

(
∑

0≤at<nt

e2πiatbt/ntX(a1, · · · , at)) (2.5)

for 0 ≤ b1 < n1, · · · , 0 ≤ bt < nt.

Equation 2.5 implies that the multi-dimensional DFT can be computed by applying

one-dimensional DFTs along each dimension. A sequence of nt-point DFTs are ap-

plied to the function obtained by fixing the first t − 1 inputs to X for each value

of (a1, · · · , at−1). Then a sequence of nt−1-point DFT’s are applied to the function

obtained by fixing all but the (t − 2)-nd input to the result of the application of the

nt-point DFT. This process continues until finally a sequence of n1-points DFT is

applied.

The multi-dimensional DFT can be interpreted as a matrix vector product. If the

functions X(a1, a2, · · · , at) and Y (b1, b2, · · · , bt) are stored lexicographically in vectors

x and y, then

y = (Fn1
⊗ Fn2

⊗ · · · ⊗ Fnt)x. (2.6)

For example, when n1 = 2, n2 = 4,

x = (X(0, 0), X(0, 1), X(0, 2), X(0, 3), X(1, 0), X(1, 1),X(1, 2), X(1, 3))T,

y = (Y (0, 0), Y (0, 1), Y (0, 2), Y (0, 3), Y (1, 0), Y (1, 1), Y (1, 2), Y (1, 3))T ,

and

Y (b1, b2) =
∑

0≤a1<2

(−1)a1b1
∑

0≤a2<4

ia2b2X(a1, a2),



8

which implies

y =







I4 I4

I4 −I4













F4

F4





















































X(0, 0)

X(0, 1)

X(0, 2)

X(0, 3)

X(1, 0)

X(1, 1)

X(1, 2)

X(1, 3)















































= (F2 ⊗ I4)(I2 ⊗ F4)x

= (F2 ⊗ F4)x. (2.7)

In general, for a two-dimensional DFT, Equation 2.5 implies

y = (Fn1
⊗ Fn2

)x

= (Fn1
⊗ In2

)(In1
⊗ Fn2

)x.

Computing the two-dimensional DFT by first computing t = (In1
⊗Fn2

)x and then

y = (Fn1
⊗ In2

)t is called the row-column algorithm. If the function X(a1, a2) is

stored in an n1 ×n2 matrix, the computation proceeds by applying n2-point DFTs to

the rows of X followed by n1-point DFTs to the columns of the partially transformed

matrix.

The generalization of the row-column algorithm applied to a t-dimensional DFT

corresponds to the factorization

Fn1
⊗ · · · ⊗ Fnt =

t
∏

i=1

(IN(i−1) ⊗ Fni
⊗ IN/N(i)),

where N = n1n2 · · ·nt, and N(i) = n1n2 · · ·ni.
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2.2 The Fast Fourier Transform (FFT)

This section presents a factorization of the DFT matrix that corresponds to the divide

and conquer step of the FFT. [1, 3, 4]

2.2.1 The Cooley-Tukey Factorization

The DFT matrix Fmn can be factorized into Fmn = (Fm ⊗ In)T (Im ⊗ Fn)P , where T

is a diagonal matrix called the twiddle factor matrix and L is a permutation matrix

called a stride permutation.

Definition 6 (Twiddle factor) The twiddle factor matrix T mn
n is defined by

T mn
n =

m−1
⊕

i=0

(Wn(ωmn)i)) (2.8)

where Wn(ωmn) = diag(1, ωmn, · · · , ωn−1
mn ). For example,

T 4
2 = diag(1, 1, 1, i), and T 8

4 = diag(1, 1, 1, ω8, 1, ω
2
8, 1, ω

3
8).

.

Definition 7 (Stride permutation) Assume x is an mn-dimensional column vec-

tor. The stride permutation matrix of size mn with stride n is defined by

Lmn
n x =



















x(0 : n : mn − 1)T

x(1 : n : mn − 1)T

...

x(n − 1 : n : mn − 1)T



















. (2.9)
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For example,














































x0

x2

x4

x6

x1

x3

x5

x7















































= L8
2x =















































1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1





























































































x0

x1

x2

x3

x4

x5

x6

x7















































.

The stride permutation matrix has the following properties.

1. Assume N = RS, then (LN
S )−1 = LN

R .

2. Assume N = RS, and AR and AS are any arbitrary R×R and S ×S matrices,

then AR ⊗ AS = LN
R (AS ⊗ AR)LN

S .

The Cooley-Tukey factorization is stated precisely in the following theorem.

Theorem 1 (Cooley-Tukey Factorization) Assume N = RS, then

FN = (FR ⊗ IS)T N
S (IR ⊗ FS)LN

R

Proof: Since (LN
R )−1 = LN

S , it is equivalent to show that the (k, l)-th element of

the (i, j) block of FNLN
S is equal to the (k, l)-th element of the (i, j) block of (FR ⊗

IS)T N
S (IR ⊗ FS). The row and column indices of the (k, l)-th element of the (i, j)

block of FNLN
S are (iS + k) and (j + lR). Therefore the (k, l)-th element of the (i, j)

block of FNLN
S is equal to ω

(iS+k)(j+lR)
N .

Since N = RS and ωN
N = 1, ωR

N = ωS, and ωS
N = ωR, ω

(iS+k)(j+lR)
N = ωij

Rωkj
N ωkl

S ,

the (i, j) block of FNLN
S is equal to ωij

RW j
SFS.

Observe that

T N
S (IR ⊗ FS) =

R−1
⊕

j=0

W j
SFS.
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Consequently, the (i, j) block of (FR⊗IS)T N
S (IR⊗FS) is equal to ωij

RW j
SFS. Therefore,

FNLN
S = (FR ⊗ IS)T N

S (IR ⊗ FS)

Since (LN
S )−1 = LN

R ,

FN = (FR ⊗ IS)T N
S (IR ⊗ FS)LN

R .

For example,

F8 = (F2 ⊗ I4)T
8
4 (I2 ⊗ F4)L

8
2

=







I4 I4

I4 −I4






T 8

4







F4 0

0 F4






L8

2.

2.2.2 A Divide and Conquer Algorithm for the FFT

An algorithm for computing the DFT can be obtained from the Cooley-Tukey factor-

ization by applying the factors one after another to the input vector, using temporary

vectors as needed. To compute y = (FR ⊗ IS)T N
S (IR ⊗ FS)LN

R x,

1. t1 = LN
R x; permute the input vector.

2. t2 = (IR ⊗ FS)t1; compute R copies of FS.

3. t3 = T N
S t2; multiply by twiddle factors.

4. y = LN
R (IS ⊗ FR)LN

S t3; compute S copies of FR at stride S.

Note: IR ⊗ FS is easily implemented with a loop that applies FS to consecutive seg-

ments of the input. The computation of FS and FR can be performed by applying the

Cooley-Tukey factorization recursively. An algorithm derived in this way is commonly

called the fast Fourier transform.

Computing a given DFT FN with Equation 2.4 directly takes computing time

θ(N2). In the Cooley-Tukey factorization, computation of the twiddle factor and the
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stride permutation can be implemented in linear time, therefore the computing time

for Cooley-Tukey factorization is

T (N) = RT (S) + ST (R) + θ(N). (2.10)

If N = 2K , Equation 2.10 becomes T (N) = 2T (N/2) + θ(N), which can easily be

shown to be θ(N log N). [5]

There are many different ways to apply the Cooley-Tukey factorization recursively.

For example, the Cooley-Tukey factorization can be applied in the following different

ways to obtain

F16 = (F2 ⊗ I8)T
16
8 (I2 ⊗ F8)L

16
2

= (F4 ⊗ I4)T
16
4 (I4 ⊗ F4)L

16
4

= (F8 ⊗ I2)T
16
2 (I8 ⊗ F2)L

16
8 .

In each of these factorizations, the Cooley-Tukey factorization can be applied to the

smaller DFTs until the base case, F2, is obtained. At each stage of the computation

the factorization can be applied for each of different factorization of N = RS. The

sequence of recursive application of Cooley-Tukey factorization can be recorded in a

tree, called factorization tree, where nodes are labeled by the corresponding trans-

form size, and each distinct tree corresponds to a different FFT algorithm. A fully

expanded tree is a tree whose leaf nodes are prime numbers. Figure 2.1 shows all 5

factorization trees for N = 24. Tree (a) corresponds to recursive factorization to the

right, and tree (d) corresponds to recursive factorization to the left. These two trees

correspond to the standard recursive FFT algorithms.
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16

2

2 4

2 2

16

8 82

24

2 2

16

4 4

2 222

16

8

4

2 2

2

2

16

8 2

42

2 2

(a) (b) (c)

(d) (e)

Figure 2.1: The possible Cooley-Tukey factorizations of N = 16

For N = 2K, there are K − 1 nontrivial factorizations of FN , corresponding to

K = 1 + (K − 1)

= 2 + (K − 2)

=
...

= (K − 1) + 1.

Therefore the number of fully expanded factorization trees of N = 2K is equal to the

recurrence

bK =
K−1
∑

i=1

bibK−i, (2.11)

with the base case b1 = 1. It is well-known [5] that bk = θ( 4K

K3/2 ).

If the trees are not necessarily fully expanded, and leaf nodes are allowed to be of

composite size, the number of factorization trees satisfies the recurrence

bK =

K−1
∑

i=1

bibK−i + 1, (2.12)

and it can be shown that bk = θ( 5K

K3/2 ).
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2.2.3 An FFT Implementation

This section contains a Matlab implementation of the FFT described in the previ-

ous section. The purpose of the implementation is to precisely state and verify the

algorithm; it is not intended to be an efficient implementation. An efficient imple-

mentation will be discussed in Chapter 3.

In order to implement an arbitrary FFT algorithm as discussed in the previous

section, it is necessary to pass a factorization tree that indicates the factorizations

that occur in the algorithm. The implementation here uses a split table to indicate

how a given node is factored. If D[k]=j, then

F2k = (F2j ⊗ I2k−j )T 2k

2k−j (I2j ⊗ F2k−j )L2k

2j

is used whenever a node of size 2k is encountered. This implies that the same factoriza-

tion is used for all computations of F2k occurring in the algorithm, and consequently

this implementation does not allow all possible algorithms.

Figure 2.2 shows the function FFT2(N, n, D, x), which implements the computa-

tion of y = FNx with Cooley-Tukey factorization. It is named FFT2 because there

is already a function named FFT in Matlab. FFT2 takes the following arguments

as its input.

• N: a positive integer, which is supposed to be a power of 2

• n: a positive integer, with n = log2 N

• D: a column vector with at least n entries, representing the split table.

• x: a column vector with size N

FFT2 computes the given FFT with the following steps.

1. Split N
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function y=FFT2(N,n,D,x)

if D(n)==n

% The base case

y = Fourier(N)*x;

else

% factor n=r+s, N=RS

r = D(n,1); R = 2^r; s = n-r; S = 2^s;

% Permute input vector

t1 = ones(N,1); %initialize temporary vector

for k=1:S

for j=1:R

t1((j-1)*S+k) = x((k-1)*R+j);

end

end

% Compute kron(I_R,F_S)

t2 = ones(N,1);%initialize temporary vector

for k=1:R

t2((k-1)*S+1:1:k*S,1) = FFT2(S,s,D,t1((k-1)*S+1:1:k*S,1));

end

% Multiply by twiddle factors

t3 = zeros(N,1); %initialize temporary vector

w = ones(S,1);

w_n = exp(-2*pi*i/N*[0:S-1])’;

for k=1:R

t3((k-1)*S+1:1:k*S,1) = w.*t2((k-1)*S+1:1:k*S,1);

w = w.*w_n; % product

end

% Compute kron(F_S,I_R)

y = ones(N,1); %initialize output vector

for k=1:S

y(k:S:k+(R-1)*S,1) = FFT2(R,r,D,t3(1:S:k+(R-1)*S,1));

end

Figure 2.2: A divide and conquer algorithm for FFT
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This step checks the input DFT size. If D[n] = n, then it computes the DFT

directly using a matrix-vector product. Otherwise it factors N = RS with

R = 2D[k] and S = N/R.

2. Permute the input vector with t1 = LN
R x.

3. Compute t2 = (IR ⊗ FS)t1

4. Multiply by the twiddle factors t3 = T N
S t2.

5. Compute y = (FR ⊗ IS)t3 using (FR ⊗ IS) = LN
R (IS ⊗ FR)LN

S .

2.3 The Dimensionless FFT

The dimensionless FFT of size N computes all possible multi-dimensional DFTs of

size N . The structure of the algorithm depends only on the size N and is independent

of dimension. For a given N = 2K, there are N/2 multi-dimensional DFTs of size N .

For example, let F16 denotes the set of multi-dimensional DFTs of size 16,

F16 :



































F16

F2 ⊗ F8, F4 ⊗ F4, F8 ⊗ F2

F2 ⊗ F2 ⊗ F4, F2 ⊗ F4 ⊗ F2, F4 ⊗ F2 ⊗ F2

F2 ⊗ F2 ⊗ F2 ⊗ F2

The elements of F16 are organized in rows by dimension.

This section provides a generalization of the Cooley-Tukey factorization that ap-

plies simultaneously to all multi-dimensional DFTs of size N = 2K . This factorization

serves as the basis of the dimensionless FFT.

2.3.1 The Dimensionless Cooley-Tukey Factorization

The dimensionless Cooley-Tukey factorization provides an analog of the Cooley-

Tukey factorization (Theorem 1) for one-dimensional DFTs that applies to all multi-

dimensional DFTs of a fixed size. The dimensionless Cooley-Tukey factorization



17

provides a generic factorization that simultaneously applies to all multi-dimensional

DFTs of size N . When the dimension changes, the only change in the factorization

is the value of the twiddle factor and the permutation.

Let FN be an arbitrary multi-dimensional DFT of size N . Then FN = (FR ⊗

IS)D(IR ⊗ FS)P , where FR and FS are multi-dimensional DFTs of size R and S

respectively, D is a diagonal matrix and P is a permutation matrix. Theorem 2

states this result more precisely.

Theorem 2 (Dimensionless Cooley-Tukey Factorization) Assume N = 2K with

N = n1 ×n2 × · · ·×nt, ni = 2ki . Let FN = Fn1
⊗Fn2

⊗ · · ·⊗Fnt, and let N = RS to

be a non-trivial factorization of N with R = N(l − 1)a, S = bN(l) and nl = ab, and

N(l) = n1n2 · · ·nl, 1 ≤ l ≤ t and N(0) = 1, N(l) = N/N(l). Then

FN = (FR ⊗ IS)D(IR ⊗ FS)P (2.13)

where FR = Fn1
⊗ Fn2

⊗ · · · ⊗ Fnl−1
⊗ Fa

FS = Fb ⊗ Fnl+1
⊗ · · · ⊗ Fnt

D = IN(l−1) ⊗ T nl
b ⊗ IN(l)

P = IN(l−1) ⊗ Lnl
a ⊗ IN(l)

Proof: Given FN = Fn1
⊗ Fn2

⊗ · · · ⊗ Fnt and N = RS, let l be the smallest index

such that n1 × n2 × · · · × nl ≥ R. Because ni = 2ki, it is always possible to factor

nl = a × b such that n1 × n2 × · · · × nl−1 × a = R and b × nl+1 × · · · × nt = S. By

the Cooley-Turkey theorem, Fnl
= (Fa ⊗ Ib)T

nl
b (Ia ⊗ Fb)L

nl
a , and

FN = Fn1
⊗ Fn2

⊗ · · · ⊗ Fnl−1
⊗ (Fa ⊗ Ib)T

nl
b (Ia ⊗ Fb)L

nl
a )⊗ Fnl+1

⊗ · · · ⊗ Fnt (2.14)

Using the notation N(i) and N(i) and Property 1 of the tensor product, Equation
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2.14 can be rewritten as

FN = (FN(l−1) ⊗ Fa ⊗ Ib ⊗ IN(l))(IN(l−1) ⊗ T nl
b ⊗ IN(l))

(IN(l−1) ⊗ Ia ⊗ Fb ⊗ FN(l))(IN(l−1) ⊗ Lnl
a ⊗ IN(l))

= (FR ⊗ IS)(IN(l−1) ⊗ T nl
b ⊗ IN(l))(IR ⊗ FS)(IN(l−1) ⊗ Lnl

a ⊗ IN(l)).

2.3.2 A Divide and Conquer Algorithm for the Dimensionless Cooley-

Tukey Factorization

With Theorem 2, the dimensionless FFT of a column vector x can be computed as

y = FNx = (FR ⊗ Is)D(IR ⊗ Fs)Px. (2.15)

Because the dimensionless Cooley-Turkey factorization also splits one large FFT ma-

trix FN into two smaller FFT matrices FR and FS, applying it recursively leads

to a divide and conquer algorithm. This section uses Matlab code to explain the

algorithm.

The function that computes y = FNx, called FFTMD, takes the following input

arguments.

• N: a positive integer, which is supposed to be a power of 2

• n: a t-dimensional column vector, such that
∏t

i ni = N, ni = 2ki

• D: a column vector with at least log2 N dimensions, corresponding to the split

table

• x: a column vector with N entries

The matlab code is shown in Figure 2.3, 2.4, 2.5 and 2.6. Similar to FFT2, FFTMD

implements a divide and conquer algorithm with the following steps.

1. Split N
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If the dimension is 1, use FFT2, otherwise use the split table to factor N = RS

and determine the index l such that R =
∏l−1

i=1 n(i, 1) ∗ a and n(l) = ab. The

arguments n1 and n2 in Figure 2.3 correspond to the arguments N(l − 1) and

N(l) in theorem 2, respectively.

2. Permute the input vector with t1 = Px, where P = (IN(l−1) ⊗ Lnl
a ⊗ IN(l))x.

3. Compute t2 = (IR ⊗ FS)t1

4. Multiply by the twiddle factors t3 = (IN(l−1) ⊗ T nl
b ⊗ IN(l))t2

5. Compute y = (FR ⊗ IS)t3
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function y=FFTMD(N,n,D,x)

t = size(n); t = t(1,1); y = ones(N,1);

if t == 1

% base case, one dimensional FFT

y = FFT2(N,log2(N),D,x);

else

% split N=RS

r = D(log2(N),1); R = 2^r; S = N/R;

% Find the n(l) to be factored

l = index(N,R,n);

n1 = 1;

for i=1:l-1

n1 = n1*n(i,1);

end

n2 = N/n1/n(l,1);

a = R/n1; b=S/n2;

% Permutes input vector

t1 = VectorPerm(n1,n(l,1),a,n2,x);

% Compute kron(I_R,F_S)

T = ones(t-l+1,1);

T(1,1) = b;

for (j=2:t-i+1)

T(j,1) = n(i+j-1,1);

end

for j=1:R

t2((j-1)*S+1:1:j*S) = FFTMD(S,T,D,t1((j-1)*S+1:1:j*S));

end

% Multiply by twiddle factors

t3 = VectorD(n1,n(i,1),b,n2,t2);

% Compute kron(F_R,I_S)

if a==1

T = ones(l-1,1);

for j=1:l-1

T(j,1) = n(j,1);

end

else

T = ones(l,1);

for j=1:l-1

T(j,1) = n(j,1);

end

T(l,1) = a;

end

for j=1:S

y(j:S:j+(R-1)*S,1) = FFTMD(R,T,D,t3(j:S:j+(R-1)*S));

end

end

Figure 2.3: A divide and conquer algorithm for dimensionless FFT
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function y=index(n,R,t)

m = 1;

for i=1:t

m = m*n(i,1);

if m>n

break;

end

end

i;

Figure 2.4: Function index, find the dimension to split
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% Vector permutation implement function

% Inputs:

% a: a positive integer, which is supposed to be a power of 2

% n: a positive integer, which is supposed to be a power of 2

% m: a positive integer, which is supposed to be a power of 2, and m<=n

% b: a positive integer, which is supposed to be a power of 2

% x: an a*n*b dimensional column vector

% Output:

% y: an a*n*b dimensional column vector,

% y=kron(eye(a),kron(stride(n,m),eye(b)))*x

function y = VectorPerm(a,n,m,b,x)

k = a*b*n;

s = size(x);

s = s(1);

if (s~=k)

error(’Input matrix and vector dimensions do not match’);

end

y = ones(s,1);

for i=1:a

t = zeros(n*b,1);

for j=1:n/m

for k=1:m

t(((k-1)*n/m+j-1)*b+1:1:((k-1)*n/m+j)*b,1) =

x(((j-1)*m+k-1)*b+1+(i-1)*n*b:1:((j-1)*m+k)*b+(i-1)*n*b,1);

end

end

%y((i-1)*n*b+1:1:i*n*b,1) = t;

for j=1:n*b

y((i-1)*n*b+j,1) = t(j,1);

end

end

y;

Figure 2.5: Permute vector with Ia ⊗ Ln
m ⊗ Ib
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% Vector twiddle function

% Inputs:

% a: a positive integer, which is supposed to be a power of 2

% n: a positive integer, which is supposed to be a power of 2

% m: a positive integer, which is supposed to be a power of 2, and m<=n

% b: a positive integer, which is supposed to be a power of 2

% x: an a*n*b dimensional column vector

% Output:

% y: an a*n*b dimensional column vector,

% y=kron(eye(a),kron(twiddle(n,m),eye(b)))*x

function y = VectorD(a,n,m,b,x)

k = a*b*n;

s = size(x);

s = s(1);

if (s~=k)

error(’Input matrix and vector dimension do not match’);

end

I = sqrt(-1);

y = ones(s,1);

for i=1:a

t = zeros(n*b,1);

w = ones(m*b,1);

w_n = exp(-2*pi*I/n*[0:m-1])’;

w_n = kron(w_n, ones(b,1)); % tensor product

for j=1:n/m

t((j-1)*m*b+1:1:j*m*b,1) =

w.*x((i-1)*n*b+(j-1)*m*b+1:1:(i-1)*n*b+j*m*b,1);

w = w.*w_n;

end

y((i-1)*n*b+1:1:i*n*b,1) = t;

end

y;

Figure 2.6: Multiply twiddle factor Ia ⊗ T n
m ⊗ Ib
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Chapter 3: FFTW

This chapter presents an overview of FFTW, an efficient package for computing one-

and multi-dimensional DFTs. FFTW has significantly better performance than stan-

dard approaches such as that found in Numerical Recipes [12] and outperforms many

industrial grade packages (see www.fftw.org/benchfft). FFTW self adapts to tune its

performance to a given hardware platform. The self adaptation is done by generat-

ing and timing alternative decompositions and selecting the best through a dynamic

programming approach.

In the remainder of this chapter, sufficient details of FFTW (version 2.1.3) are

provided to understand the modifications made to support the dimensionless FFT.

Additional details, including the documentation and the source code are available at

http://www.fftw.org.

3.1 FFTW Overview

In FFTW, the computation of the DFT is performed by an executor using highly

optimized, composable blocks of C code called codelets. A codelet is a specialized

piece of code that computes part of the transform. The combination of codelets

applied by the executor is specified by a data structure called a plan. The planner

determines an appropriate plan for a given transform size and hardware platform by

searching for the fastest possible execute time. Once a good plan has been determined,

it can be saved and used for future computation.

The executor implements the Cooley-Tukey factorization. The algorithm recur-

sively computes R DFTs of size S, multiplies the twiddle factors, and finally computes

S DFTs of size R. FFTW has a library of codelets that implement small DFTs. There

are two kinds of codelets: 1) no-twiddle codelets, which compute the DFT of a fixed

size, and are used as the base case of the recursion, 2) twiddle codelets, which multi-
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ply their input by the twiddle factors before computing the DFT of a fixed size, and

are used for the internal levels of the recursion.

FFTW uses a modified version of the Cooley-Tukey factorization given in the

following equation.

y = LN
R (IS ⊗ FR)T N

R LN
S (IR ⊗ FS)LN

R x (3.1)

The computation is performed in two steps.

1. y = (IR ⊗ FS)LN
R x

2. y = LN
R (IS ⊗ FR)T N

R LN
S y

The first step is an out-of-place computation with the result stored in the output

vector y, whereas the second step is performed in-place without any need for extra

storage. Step one may be computed recursively where the strides from the recursive

calls are combined and the base case is computed by a no-twiddle codelet. Step two

is always performed by a twiddle codelet which is written so that the computation

can be done in-place.

The plan is a recursive data structure that specifies the recursive computation

used for a DFT of a given size. The plan corresponds to the tree notation used in

Chapter 2 to represent the recursive computation of the DFT. However, the only

trees that arise in FFTW are rightmost trees, i.e. trees whose left children are all

leaf nodes. This is due to the fact that in FFTW the left factor of the Cooley-Tukey

factorization is always computed by a twiddle codelet. In addition to the structure

of the recursive computation, the plan data structure (more precisely, the plan node

data structure) also includes pointers to the codelets used and stores the values of

the twiddle factors used by the twiddle codelets.

For example, Figure 3.1 shows the plan corresponding to the factorization

F128 = (F4 ⊗ I32)T
128
32 (I4 ⊗ F32)L

128
4

= (F4 ⊗ I32)T
128
32 (I4 ⊗ ((F8 ⊗ I4)T

32
4 (I8 ⊗ F4)L

32
8 ))L128

4 .
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twiddle codelet 4
 twiddle factor

Plan  n=128
 Plan_node root

Plan  n=32
 Plan_node root

twiddle codelet 8
 twiddle factor

no_twiddle codelet 4

Figure 3.1: A possible plan for N = 128

The twiddle factors are stored in the two internal nodes.

T 128
32 =

3
⊕

i=0

W i
32 =

3
⊕

i=0

diag(1, ω128, ω
2
128, · · · , ω31

128)
i

T 32
4 =

7
⊕

i=0

W i
4 =

7
⊕

i=0

diag(1, ω32, ω
2
32, ω

3
32)

i

In order to construct an efficient plan, FFTW measures the execution time of

different plans and selects the plan which gives the best performance. Ideally, FFTW

should try all possible plans, but in practice this is not feasible, since there are ex-

ponentially many possible plans. While the number of plans (rightmost trees) is

considerably less than the total number of recursive FFT algorithms (see Chapter 2),

there are still too many for exhaustive search. Therefore, FFTW uses a dynamic pro-

gramming algorithm to do the search. The dynamic programming algorithm assumes

that the execution time of the best plan is fixed for a given input size, and is not

related to the calling context. A table of plans is created bottom up, starting with

N = 2. For the next larger entry in the table, all possible splits, with the left child a

twiddle codelet, are timed using the plans in the table for the recursive calls and the

split with the fastest runtime is selected and added to the table.

For example, assume the planner is searching for the best plan for N = 64, and

the best plans for N = 2, 4, 8, 16 and 32 are known. The five splits shown in Figure

3.2, using the best known plans, are generated and timed. If exhaustive search is
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64

2 32

64

4 16

64

8 8

64

16 4

64

32 2

Figure 3.2: All possible factorizations of N = 64

used, 32 plans must be timed instead of 5.

Table 3.1 shows the number of plans that can be used by FFTW to compute

DFTN , N = 2K, for K = 1, 2, · · · , 20, using codelets up to size 64. The total

number of FFT algorithms is also listed for comparison purposes. The number of

plans satisfies the recurrence relation

T6(K) =











∑6
i=1 T6(K − i) K > 6

2K−1 K ≤ 6

It can be shown that T6(K) = θ(αK), where α
.
= 1.98 is the largest real root of the

characteristic equation

x6 − x5 − x4 − x3 − x2 − x − 1 = 0

Recall that the total number of FFT algorithms is θ(5K/K3/2). Despite the re-

duced number that FFTW considers, there are still exponentially many possibilities.

3.2 FFTW Plans and the Recursive Planner

This section discusses the plan data structure and the recursive planner in detail.

3.2.1 FFTW Plan Data Structure

The FFTW plan, fftw plan, is a data structure containing all necessary information

to compute a one-dimensional DFT: the recursive factorization used, codelets and

twiddle factors. The fftw plan, defined in Figure 3.3, is a data structure describing a

factorization tree. Details of some components of fftw plan are listed below.
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Table 3.1: Number of factorization and FFTW plan

K Number of factorizations of N = 2K
Number of possible FFTW

plan of N = 2K

1 1 1

2 2 2

3 5 4

4 15 8

5 51 16

6 189 32

7 732 63

8 2223 125

9 7107 248

10 23484 492

11 79071 976

12 267972 1936

13 901860 3840

14 2968023 7617

15 9838575 15109

16 32774598 29970

17 1.09 × 108 59448

18 3.65 × 108 117920

19 1.22 × 109 233904

20 4.05 × 109 463968

struct fftw_plan_struct {

int n;

int refcnt;

fftw_direction dir;

int flags;

int wisdom_signature;

enum fftw_node_type wisdom_type;

struct fftw_plan_struct *next;

fftw_plan_node *root;

double cost;

fftw_recurse_kind recurse_kind;

int vector_size;

};

typedef struct fftw_plan_struct *fftw_plan;

Figure 3.3: FFTW plan data structure



29

1. n is the size of the transform. While n can be any positive integer, FFTW is

best at handling sizes of the form 2a, 3b, 5c, 7d, 11e, 13f , where e + f is either 0

or 1.

2. dir can be -1 or 1, and is the sign of the exponent in the formula that defines

the DFT. The aliases FFTW FORWARD (-1) and FFTW BACKWARD (+1)

are provided.

3. flags is a boolean OR of zero or more of the following:

• FFTW MEASURE: this flag tells FFTW to find the optimal plan by ac-

tually computing several FFTs and measuring their execution time.

• FFTW ESTIMATE: this flag tells FFTW to provide a “reasonable” plan

instead of computing FFTs. It is the default case.

• FFTW OUT OF PLACE: this flag produces a plan assuming that the in-

put and output arrays are distinct. It is the default case.

• FFTW IN PLACE: this flag produces a plan assuming that the output is

the same as the input array.

• FFTW USE WISDOM: this flag uses any wisdom that is available to help

in the creation of the plan.

4. refcnt is the reference count of a given fftw plan.

5. next is a pointer to another fftw plan, that points to the right child of the

current node.

6. root is a pointer to an fftw plan node, which is defined in Figure 3.4. It contains

a pointer to the codelet and twiddle factors used by the left child, or just the

codelet if the node corresponds to the base of the recursion.
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typedef struct fftw_plan_node_struct {

enum fftw_node_type type;

union {

/* nodes of type FFTW_NOTW */

struct {

int size;

fftw_notw_codelet *codelet;

const fftw_codelet_desc *codelet_desc;

} notw;

/* nodes of type FFTW_TWIDDLE */

struct {

int size;

fftw_twiddle_codelet *codelet;

fftw_twiddle *tw;

struct fftw_plan_node_struct *recurse;

const fftw_codelet_desc *codelet_desc;

} twiddle;

/* other cases are not listed here */

} nodeu;

int refcnt;

} fftw_plan_node;

Figure 3.4: fftw plan node data structure

7. cost is the evaluation of the specified plan. If it is known, the cost is the

execution time.

In addition to fftw plan, other data structures are used.

1. fftw plan node data structure

Figure 3.4 shows the definition of fftw plan node, which contains three compo-

nents.

(a) type refers to the type of the current fftw plan node. In FFTW, there are

a total of seven types of fftw plan nodes.

(b) nodeu is the union of seven structures, corresponding to the seven types
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typedef struct {

const char *name; /* name of the codelet */

void (*codelet) (); /* pointer to the codelet itself */

int size; /* size of the codelet */

fftw_direction dir; /* direction */

enum fftw_node_type type; /* TWIDDLE or NO_TWIDDLE */

int signature; /* unique id */

int ntwiddle; /* number of twiddle factors */

const int *twiddle_order; /*

* array that determines the order

* in which the codelet expects

* the twiddle factors

*/

} fftw_codelet_desc;

Figure 3.5: fftw codelet desc data structure

typedef struct fftw_twiddle_struct {

int n;

const fftw_codelet_desc *cdesc;

fftw_complex *twarray;

struct fftw_twiddle_struct *next;

int refcnt;

} fftw_twiddle;

Figure 3.6: fftw twiddle data structure

of fftw plan nodes. Figure 3.4 only shows the structures for the types

FFTW NOTW and FFTW TWIDDLE, corresponding to the no-twiddle

and twiddle codelets. Each structure contains pointers to the codelet, the

codelet description, the twiddle factors and the recursive fftw plan node.

(c) refcnt is the reference count to fftw plan node.

2. fftw codelet desc data structure

Figure 3.5 shows the definition of fftw codelet desc, which contains a description

of a codelet.

3. fftw twiddle data structure
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struct wisdom {

int n;

int flags;

fftw_direction dir;

enum fftw_wisdom_category category;

int istride;

int ostride;

int vector_size;

enum fftw_node_type type; /* this is the wisdom */

int signature; /* this is the wisdom */

fftw_recurse_kind recurse_kind; /* this is the wisdom */

struct wisdom *next;

};

Figure 3.7: wisdom data structure

void fftw_export_wisdom(void(* emitter)(char c, void *), void *data);

void fftw_export_wisdom_to_file(FILE *output_file);

char *fftw_export_wisdom_to_string(void);

Figure 3.8: Exporting wisdom

The definition of fftw twiddle is shown in Figure 3.6. This structure is used to

represent a twiddle factor T n
s , where n is given directly, and s is given in cdesc.

The values of the twiddle factors are stored in the array twarray.

4. wisdom data structure

FFTW implements a method for saving plans to disk and restoring them. This

mechanism is called wisdom, whose definition is given in Figure 3.7.

When a plan is created with FFTW MEASURE and FFTW USE WISDOM

flags, a copy of this plan is stored. Thereafter, if the FFTW USE WISDOM is

set and the plan was previously stored it is simply reused. FFTW has mecha-

nisms to save and read wisdom to disk, which are shown in Figure 3.8 and 3.9.
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fftw_status fftw_import_wisdom(int(* get_input)(void *),void *data);

fftw_status fftw_import_wisdom_from_file(FILE *input_file);

fftw_status fftw_import_wisdom_from_string(const char *input_string);

Figure 3.9: Importing wisdom

3.2.2 Recursive Planner

In FFTW, the planner creates a plan for an FFT of a given size using dynamic

programming. It also provides wisdom to retrieve previously computed plans in

order to save time since the dynamic programming procedure involves executing many

alternative FFTs.

The following two functions are responsible for creating a plan.

fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags);

fftw_plan fftw_create_plan_specific(int n, fftw_direction dir,

int flags,

fftw_complex *in, int istride,

fftw_complex *out, int ostride);

The function fftw create plan returns either a plan to compute a DFT of size n

or NULL if it fails. The function fftw create plan specific takes additional arguments

that specify the input and output arrays and strides used to execute different FFTs.

The resulting plans will be optimized using the given arrays and strides. If the user

calls the function fftw create plan, it will allocate temporary arrays for input and

output, set the stride to 1, and call the function fftw create plan specific.

The function fftw create plan specific first creates an empty table, which is imple-

mented using a linked list. The table stores the “optimal” plans (recall that since

the sub-optimality principle is not guaranteed to be satisfied, the plans computed by

dynamic programming (DP) may not be optimal and are only approximations to the

optimal plans) of different sizes, and used for the search. After the table is created,

the function fftw create plan specific calls the function planner to search for a good

plan of the given size.
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The function planner first checks the table to see whether there is already an

optimal plan for the given size. If there is already such a plan in the table, then

the function planner returns this plan, otherwise it checks the wisdom by calling the

function planner wisdom. If such a plan is found in wisdom, then it returns the plan.

If no plan is found in the table or wisdom, the function planner calls the function

planner normal to search for a good plan using DP, and adds the returned plan to

the table and wisdom.

The function planner normal tries all possible factorizations FN = LN
R (IS ⊗

FR)T N
R LN

S (IR ⊗ FS)LN
R such that there is a twiddle codelet of size R. It also con-

siders the computation of FN with a no-twiddle codelet of size N if it exists. For

each factorization, planner normal calls the function planner recursively to deter-

mine the optimal plan of size S. Once the plan of size S is returned, a plan for FN

is constructed using this plan and the twiddle codelet of size R. The FFT using the

constructed plan is then executed and timed. The function planner normal returns

the plan corresponding to the factorization with the smallest runtime, or the plan

with the no-twiddle codelet if it takes less time than all the factored FFTs.

3.3 Computing the One-dimensional DFT

After an fftw plan is created, it can be used to compute the one-dimensional DFT for

one or multiple input vectors. In FFTW, the computation of one-dimensional DFT

starts from function fftw, which could compute multiple one-dimensional DFTs, or

fftw one, which only computes one DFT.

void fftw(fftw_plan plan, int howmany,

fftw_complex *in, int istride, int idist,

fftw_complex *out, int ostride, int odist)

void fftw_one(fftw_plan plan, fftw_complex *in, fftw_complex *out)

The arguments are listed and discussed below.
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fftw_one fftw_executor_simple executor_many codelet

Figure 3.10: Computing One-dimensional FFT

• plan is a valid fftw plan created by the recursive planner. (See Section 3.2).

• howmany is the number of DFTs to be computed. It is faster to use fftw to

compute many DFTs than calling fftw one many times, computing one DFT

each time.

• in, istride and idist describe the input array(s). The input array is segmented

into howmany subarrays with base addresses in, in+idist, ..., in+(howmany-

1)*dist. Each subarray is accessed at stride istride.

• out, ostride and odist describe the output array(s) in the same way as input

arrays. If the plan specifies an in-place transform, ostride and odist are always

ignored.

3.3.1 Executor

Figure 3.10 shows the process of computing a one-dimensional DFT. The computa-

tion starts from the function fftw one, then calls the function fftw executor simple,

which calls either a codelet to compute the base case of the FFT or executor many

to recursively compute the FFT using the Cooley-Tukey factorization (Theorem 1).

The factorizations used are determined by the specified plan. The combination of

fftw executor simple and executor many is called the executor. Suppose an input

transform of size N is factorized into N = RS by a specific fftw plan, the executor

recursively computes R transforms of size S by calling the executor recursively or a
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no-twiddle codelet. Then it calls the twiddle codelet, which multiplies the results by

twiddle factors, and computes S transforms of size R at a fixed stride.

3.3.2 Codelets

Codelets are optimized fragments of C code specialized to compute a DFT of a fixed

size. In FFTW, there are seven kinds of codelets, the most important are no-twiddle

codelet, fftw notw codelet, and twiddle codelet, fftw twiddle codelet. A no-twiddle

codelet computes the DFT of a fixed size, and is used as the base case in the recursion.

The twiddle codelet is used for the internal levels of the recursion, and includes

computation of the twiddle factors. Twiddle codelets compute multiple DFTs of a

fixed size and consequently use a loop to iterate over the straight-line code for a given

DFT.

• The no-twiddle codelet

A no-twiddle codelet takes four input arguments, which represent the initial

address (a pointer) of the input and output array, the input stride and output

stride, respectively. The no-twiddle codelets perform an out-of-place computa-

tion, it computes the DFT of the input array, and puts the result into the output

array. Figure 3.11 shows the source code of fftw no twiddle 4, the no-twiddle

codelet of size 4.

• The twiddle codelet

A twiddle codelet takes five input arguments: a pointer to the input/output ar-

ray, a pointer to the twiddle factor, the input/output stride, the number of trans-

forms to compute, and the initial address distance between the input/output

vectors of different transforms. The twiddle codelets perform in-place computa-

tion, with the input array modified to contain the result when the call completes.

Figure 3.12 shows the source code of fftw twiddle 4, the twiddle codelet of size
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void fftw_no_twiddle_4(const fftw_complex *input, fftw_complex *output,

int istride, int ostride)

{

fftw_real tmp3; fftw_real tmp11; fftw_real tmp9;

fftw_real tmp15; fftw_real tmp6; fftw_real tmp10;

fftw_real tmp14; fftw_real tmp16;

ASSERT_ALIGNED_DOUBLE;

{

fftw_real tmp1; fftw_real tmp2;

fftw_real tmp7; fftw_real tmp8;

ASSERT_ALIGNED_DOUBLE;

tmp1 = c_re(input[0]);

tmp2 = c_re(input[2 * istride]);

tmp3 = tmp1 + tmp2;

tmp11 = tmp1 - tmp2;

tmp7 = c_im(input[0]);

tmp8 = c_im(input[2 * istride]);

tmp9 = tmp7 - tmp8;

tmp15 = tmp7 + tmp8;

}

{

fftw_real tmp4; fftw_real tmp5;

fftw_real tmp12; fftw_real tmp13;

ASSERT_ALIGNED_DOUBLE;

tmp4 = c_re(input[istride]);

tmp5 = c_re(input[3 * istride]);

tmp6 = tmp4 + tmp5;

tmp10 = tmp4 - tmp5;

tmp12 = c_im(input[istride]);

tmp13 = c_im(input[3 * istride]);

tmp14 = tmp12 - tmp13;

tmp16 = tmp12 + tmp13;

}

c_re(output[2 * ostride]) = tmp3 - tmp6;

c_re(output[0]) = tmp3 + tmp6;

c_im(output[ostride]) = tmp9 - tmp10;

c_im(output[3 * ostride]) = tmp10 + tmp9;

c_re(output[3 * ostride]) = tmp11 - tmp14;

c_re(output[ostride]) = tmp11 + tmp14;

c_im(output[2 * ostride]) = tmp15 - tmp16;

c_im(output[0]) = tmp15 + tmp16;

}

Figure 3.11: The no-twiddle codelet of size 4
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4.

3.4 Multi-dimensional Fourier Transform in FFTW

FFTW provides routines to compute multi-dimensional DFT using the row-column

algorithm.

3.4.1 Multi-dimensional Plans

The data structure for a plan for a multi-dimensional DFT, fftwnd plan, is defined in

Figure 3.13. Most of the components are similar to those in fftw plan, except for the

following.

• rank is a nonnegative integer equal to the dimensions of the transform.

• n is a pointer to an integer array of size rank, containing the size of the trans-

form in each dimension.

• plans holds the one-dimensional FFTW plans for each dimension.

3.4.2 Creating a Plan for Multi-dimensional DFTs

The following two functions create a valid fftwnd plan.

fftwnd_plan fftwnd_create_plan(int rank, const int *n,

fftw_direction dir, int flags);

fftwnd_plan fftwnd_create_plan_specific(int rank, const int *n,

fftw_direction dir,

int flags,

fftw_complex *in, int istride,

fftw_complex *out, int ostride)

The function fftwnd create plan returns a valid fftwnd plan, or NULL if for some

reason, the plan cannot be created. This can happen if memory runs out or if the

arguments are invalid. The function fftwnd create plan specific takes additional ar-

guments specific input/output arrays and their strides. The additional arguments
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void fftw_twiddle_4(fftw_complex *A, const fftw_complex *W,

int iostride, int m, int dist)

{

int i;

fftw_complex *inout;

inout = A;

for (i = m; i > 0; i = i - 1, inout = inout + dist, W = W + 3) {

fftw_real tmp1, tmp25, tmp6, tmp24;

fftw_real tmp12, tmp20, tmp17, tmp21;

ASSERT_ALIGNED_DOUBLE;

tmp1 = c_re(inout[0]); tmp25 = c_im(inout[0]);

{ fftw_real tmp3, tmp5, tmp2, tmp4;

ASSERT_ALIGNED_DOUBLE;

tmp3 = c_re(inout[2 * iostride]); tmp5 = c_im(inout[2 * iostride]);

tmp2 = c_re(W[1]); tmp4 = c_im(W[1]);

tmp6 = (tmp2 * tmp3) - (tmp4 * tmp5);

tmp24 = (tmp4 * tmp3) + (tmp2 * tmp5); }

{ fftw_real tmp9, tmp11, tmp8, tmp10;

ASSERT_ALIGNED_DOUBLE;

tmp9 = c_re(inout[iostride]); tmp11 = c_im(inout[iostride]);

tmp8 = c_re(W[0]); tmp10 = c_im(W[0]);

tmp12 = (tmp8 * tmp9) - (tmp10 * tmp11);

tmp20 = (tmp10 * tmp9) + (tmp8 * tmp11); }

{ fftw_real tmp14, tmp16, tmp13, tmp15;

ASSERT_ALIGNED_DOUBLE;

tmp14 = c_re(inout[3 * iostride]); tmp16 = c_im(inout[3 * iostride]);

tmp13 = c_re(W[2]); tmp15 = c_im(W[2]);

tmp17 = (tmp13 * tmp14) - (tmp15 * tmp16);

tmp21 = (tmp15 * tmp14) + (tmp13 * tmp16); }

{ fftw_real tmp7, tmp18, tmp27, tmp28;

ASSERT_ALIGNED_DOUBLE;

tmp7 = tmp1 + tmp6; tmp18 = tmp12 + tmp17;

c_re(inout[2 * iostride]) = tmp7 - tmp18;

c_re(inout[0]) = tmp7 + tmp18;

tmp27 = tmp25 - tmp24; tmp28 = tmp12 - tmp17;

c_im(inout[iostride]) = tmp27 - tmp28;

c_im(inout[3 * iostride]) = tmp28 + tmp27; }

{ fftw_real tmp23, tmp26, tmp19, tmp22;

ASSERT_ALIGNED_DOUBLE;

tmp23 = tmp20 + tmp21; tmp26 = tmp24 + tmp25;

c_im(inout[0]) = tmp23 + tmp26;

c_im(inout[2 * iostride]) = tmp26 - tmp23;

tmp19 = tmp1 - tmp6; tmp22 = tmp20 - tmp21;

c_re(inout[3 * iostride]) = tmp19 - tmp22;

c_re(inout[iostride]) = tmp19 + tmp22; }

}

}

Figure 3.12: The twiddle codelet of size 4
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typedef struct {

int is_in_place; /* 1 if for in-place FFTs, 0 otherwise */

int rank; /*

* the rank (number of dimensions) of the

* array to be FFTed

*/

int *n; /*

* the dimensions of the array to the

* FFTed

*/

fftw_direction dir;

int *n_before; /*

* n_before[i] = product of n[j] for j < i

*/

int *n_after; /* n_after[i] = product of n[j] for j > i */

fftw_plan *plans; /* 1d fftw plans for each dimension */

int nbuffers, nwork;

fftw_complex *work; /*

* work array big enough to hold

* nbuffers+1 of the largest dimension

* (has nwork elements)

*/

} fftwnd_data;

typedef fftwnd_data *fftwnd_plan;

Figure 3.13: Multi-dimensional FFTW plan
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are similar to those in function fftw create plan specific. Multi-dimensional plans are

created by calling the one-dimensional planner for each dimension. The resulting

one-dimensional plans are inserted into the multi-dimensional plan.

3.4.3 Computing the Multi-dimensional DFT

The function fftwnd computes one or more multi-dimensional DFTs. The function is

defined as following. The arguments are similar to those in function fftw.

void fftwnd(fftwnd_plan plan, int howmany,

fftw_complex *in, int istride, int idist,

fftw_complex *out, int ostride, int odist)

FFTW applies the row-column algorithm to compute multi-dimensional DFTs

(Section 2.1.4). More precisely, it takes the one-dimensional plan of each dimension

and uses fftw to compute the DFT in each dimension. The one-dimensional DFTs

are computed multiple times at a stride.
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Chapter 4: Extending FFTW to Compute the Dimensionless FFT

FFTW uses the row-column algorithm to compute multi-dimensional DFTs. This

chapter explains the changes that were made to FFTW so that it can use the dimen-

sionless FFT to compute multi-dimensional DFTs.

In order to support the dimensionless FFT theorem (Theorem 2) in FFTW, the

following modifications were made.

1. FFTW plan data structures

In order to extend the plan to multi-dimensional DFTs, the dimension, trans-

form sizes in each dimension, and generalized twiddle factors must be incorpo-

rated.

2. Recursive planner

For a given multi-dimensional DFT, the recursive calls used by the planner

involve multi-dimensional DFTs. The planner was modified to determine the

necessary transforms for each possible split. Since there are many possible

multi-dimensional DFTs (2n−1 possibilities of size 2n) and only a small subset

is used for a particular transform, a hash table was used to store “optimal”

plans. In the one-dimensional case this is not necessary since there is only one

transform for a given size.

3. Executor

The executor was modified to support the generalized stride permutation that

occurs in the dimensionless FFT.

4. Codelet library

A library of multi-dimensional DFTs are required to support the base cases

used by the dimensionless FFT.
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In the remainder of this chapter, each of these changes is elaborated except the

generation of the multi-dimensional codelet library, which is discussed in the next

chapter.

4.1 The Recursive Evaluation of the Dimensionless FFT

FFTW incorporates the initial stride permutation in the Cooley-Tukey factorization

into the addressing, used to access the input vectors. In recursive calls to the execu-

tor, the necessary re-addressing is obtained simply by multiplying the stride and the

stride information is passed to recursive calls as an extra parameters to the executor.

In order to incorporate the initial permutation used by the dimensionless FFT into

addressing calculations, a block parameter in addition to the stride parameter is re-

quired. This section shows how to recursively update the block and stride information

used by the dimensionless FFT. After deriving the necessary addressing operations,

a program is presented to illustrate how this is implemented when computing the

dimensionless FFT. In the following section this is incorporated into FFTW.

4.1.1 Generalized Stride Permutations

The following example illustrates how strides are combined in recursive calls in the

one-dimensional DFT. Assume

N = R1S1 = R1(R2S2), (4.1)

and the Cooley-Tukey factorization is repeatedly applied to obtain

y = FNx

= (FR1
⊗ IS1

)T N
S1

(IR1
⊗ FS1

)LN
R1

x

= (FR1
⊗ IS1

)T N
S1

(IR1
⊗ ((FR2

⊗ IS2
)T S1

S2
(IR2

⊗ FS2
)LS1

R2
))LN

R1
x. (4.2)
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Equation 4.2 first permutes the input vector x with the stride permutation matrix

LN
R1

to produce a temporary vector

t1 = LN
R1

x =



















x(0 : R1 : N − 1)T

x(1 : R1 : N − 1)T

...

x(R1 − 1 : R1 : N − 1)T



















Thereafter, t1 contains R1 blocks of size S1, each accessed at stride R1. The ith block

starts at address i. The recursive application of FS1
is applied to each of these blocks.

In the recursive call, the input block is permuted with the stride permutation LS1

R2
to

produce

t2 = LS1

R2
x(0 : R1 : N − 1)T

=



















x(0 : R1R2 : N − 1)T

x(R1 : R1R2 : N − 1)T

...

x(R1(R2 − 1) : R1R2 : N − 1)T



















.

The elements of t2 are accessed with a combined stride equal to R1R2. Additional

recursive calls access its data at stride equal to the product of all of the combined

strides. FFTW uses this fact in the executor by passing the current stride to each

recursive call and multiplying the input stride by the stride required by the stride

permutation at the current level in the factorization tree.

If the same recursive factorization of N is used to compute a multi-dimensional

DFT FN of size N , using the dimensionless FFT, a similar recursive address com-

putation is possible with three parameters: a base address, a stride and a block.

Let x be the input array and t = Px = (I ⊗ L ⊗ I)x, with the three parameters, the

index correspondence is

t(base + i) = x(base + bi/blockc × stride + i mod block). (4.3)
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The derivation of the parameters is shown in the following theorem.

Theorem 3 (Generalized Stride Argument) Let

exec(x,y,N,[n1, · · · , nt],base,stride,block) be a recursive function, based on the dimen-

sionless FFT, to compute y(base) = FNx(base, stride, block), where

FN = Fn1
⊗ · · · ⊗ Fnt,

N = n1 × · · · × nt = n1 × block,

x(base, stride, block) =



























x(base : 1 : base + block − 1)

x(base + stride : 1 : base + stride + block − 1)

...

x(base + (n1 − 1) ∗ stride : 1 :

base + (n1 − 1) ∗ stride + block − 1)



























,

y(base) = y(base : 1 : base + N − 1).

Let 1 ≤ l ≤ t with nl = ab, N1 = n1 · · ·nl−1, N1 = nl+1 · · ·nt, and R = N1a and

S = bN1, and assume the dimensionless factorization

FN = (FR ⊗ IS)(IN1
⊗ T nl

b ⊗ IN1
)(IR ⊗ FS)(IN1

⊗ Lnl
a ⊗ IN1

)

is used to compute y(base) = FNx(base, stride, block), where

FR = Fn1
⊗ · · · ⊗ Fnl−1

⊗ Fa,

FS = Fb ⊗ Fnl+1
⊗ · · · ⊗ Fnt.

Then the recursive calls to compute the R copies of FS using the dimensionless FFT

accesses sub-vectors of x determined by base′, stride′ and block′. The values base′,

stride′ and block′ are determined according to two cases.

1. l > 1

In this case, the i-th, 0 ≤ i < R, call to exec(x, y, S, [b, nl+1, · · · , nt], base′, stride′, block′)

is used to compute

y(base′) = FSx(base′, stride′, block′)



46

with the values

stride′ = aN1,

block′ = S/b = N1,

base′ = base + i0 × stride + i1 × nl × N1 + i2 × N1, (4.4)

where 0 ≤ i0 < n1, 0 ≤ i1 < N1/n1, 0 ≤ i2 < a, and i = i0R/n1 + i1a + i2.

2. l = 1

In this case N1 = 1, R = N1a = a, and the i-th call to

exec(x, y, S, [b, nl+1, · · · , nt], base′, stride′, block′) is used to compute

y(base′) = FSx(base′, stride′, block′)

with the values

stride′ = a × stride,

block′ = S/b = N1 = block,

base′ = base + i × stride, (4.5)

where 0 ≤ i < a.

Proof: The input vector x(base, stride, block) = x, where block = n2 · · ·nt. Before

applying IR⊗FS, the input vector is permuted with P = IN1
⊗Lnl

a ⊗IN1
. The result of

applying the permutation P can be related to the base, stride and block parameters

by considering two cases separately.

1. l > 1

In this case, the permutation P can be blocked into n1 identical permutations
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that act independently on the blocks of x of size determined by stride and block.

Px = (IN1
⊗ Lnl

a ⊗ IN1
)x

= ((In1
⊗ IN1/n1

) ⊗ Lnl
a ⊗ IN1

)x

= (In1
⊗ (IN1/n1

⊗ Lnl
a ⊗ IN1

))x

=













IN1/n1
⊗ Lnl

a ⊗ IN1

. . .

IN1/n1
⊗ Lnl

a ⊗ IN1

























x(base : 1 : base + block − 1)

...

x(base + (n1 − 1)stride : 1 : base + (n1 − 1)stride + block − 1)













.

The permutation IN1/n1
⊗ Lnl

a ⊗ IN1
naturally segments x into chunks of size S

for which the parameters base′, stride′ and block′ are easily determined.

Px =



































































































x(base : 1 : base + N1 − 1)

x(base + aN1 : 1 : base + aN1 + N1 − 1)

...

x(base + (b − 1)aN1 : 1 : base + (b − 1)aN1 + N1 − 1)

























x(base + N1 : 1 : base + 2N1 + 1)

...







...






x(base + nlN1 : 1 : base + nlN1 + N1 − 1)

...







...






x(base + stride : 1 : base + stride + N1 − 1)

...







...
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Inside each chunk of size S = bN1, stride′ = aN1 and block′ = N1. The starting

index for each of the R chunks of size S is indicated by R values of base′. Within

one group of size block there are aN1/n1 chunks of size S. These chunks start

at index i1nlN1 + i2N1, where 0 ≤ i1 < N1/n1 and 0 ≤ i2 < a. The base address

increases by stride when going from one group of size block to the next. Since

there are n1 groups the base address are given by the equation in case 1 of the

theorem.

2. l = 1

In this case N1 = 1, N1 = block, and P = (Ln1
a ⊗ IN1

). The permutation P

permutes blocks of size N1.

Px = (Ln1

a ⊗ I
N1

)x

= (Ln1

a
⊗ Iblock)













x(base : 1 : base + block − 1)

...

x(base + (n1 − 1)stride : 1 : base + (n1 − 1)stride + block − 1)













=



























































x(base : 1 : base + block − 1)

x(base + a × stride : 1 : base + a × stride + block − 1)

...

x(base + (b − 1)a × stride : 1 : base + (b − 1)a × stride + block − 1)

























x(base + stride : 1 : base + stride + block − 1)

...







...









































.

The parameters for the R recursive calls to FS are determined by grouping the

permuted blocks into chunks of size S. Inside each chunk of size S elements

are obtained from blocks of size block accessed at stride′ = a × stride. The

parameter block′ = block. The R chunks of size S are accessed beginning at

base′ = base + i × stride.
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4.1.2 Sample Computation of the Recursive Dimensionless FFT

In this section, two sample factorizations are used to illustrate the input data access

pattern described in Theorem 3.

The dimensionless FFT algorithm is applied, using the factorization 4096 = 8 ×

16 × 32, to two diffferent multi-dimensional DFTs: F4 ⊗ F16 ⊗ F32 ⊗ F2 and F4 ⊗

F128⊗F8. In each example we illustrate how the permutations are combined and how

the recursion parameters in Theorem 3 are set. The first example illustrate case 1 of

Theorem 3 and the second example illustrates case 2.

1. F4096 = F4 ⊗ F16 ⊗ F32 ⊗ F2

In this case, the dimensionless Cooley-Tukey factorization is

y = F4096x

= (F8 ⊗ I512)D1(I8 ⊗F512)P1x

= (F8 ⊗ I512)D1(I8 ⊗ ((F16 ⊗ I32)D2(I16 ⊗ F32)P2))P1x

= ((F4 ⊗ F2) ⊗ I512)D1(I8 ⊗ (((F8 ⊗ F2) ⊗ I32)D2(I16 ⊗ (F16 ⊗ F2))P2))P1x,

where

P1 = I4 ⊗ L16
2 ⊗ I64,

D1 = I4 ⊗ T 16
8 ⊗ I64,

P2 = I8 ⊗ L32
2 ⊗ I2,

D2 = I8 ⊗ T 32
16 ⊗ I2,

and the corresponding parameters (see Theorem 3) are

l1 = 2, N1 = 4, N1 = 64, nl1 = 16, a1 = 2, b1 = 8,

l2 = 2, N2 = 8, N2 = 2, nl2 = 32, a2 = 2, b2 = 16.
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When applying this factorization to an input vector x, x is first permuted by

P1, producing a temporary vector

t1 = P1x = (I4 ⊗ L16
2 ⊗ I64)x (4.6)

=



















L16
2 ⊗ I64

L16
2 ⊗ I64

L16
2 ⊗ I64

L16
2 ⊗ I64





































x(0 : 1 : 1023)

x(1024 : 1 : 2047)

x(2048 : 1 : 3071)

x(3072 : 1 : 4095)



















.

Each block x(baseb : 1 : baseb + 1023), where baseb = i0 × 1024, 0 ≤ i0 < 4, is

permuted with L16
2 ⊗ I64. Therefore

t1(baseb : 1 : baseb + 1023) = (L16
2 ⊗ I64)x(baseb : 1 : baseb + 1023)

= (L16
2 ⊗ I64)







































x(baseb : 1 : baseb + 63)

x(baseb + 64 : 1 : baseb + 127)

x(baseb + 128 : 1 : baseb + 191)

x(baseb + 192 : 1 : baseb + 255)

...

x(baseb + 896 : 1 : baseb + 959)

x(baseb + 960 : 1 : baseb + 1023)







































=

































































x(baseb : 1 : baseb + 63)

x(baseb + 128 : 1 : baseb + 191)

...

x(baseb + 896 : 1 : baseb + 959)





































x(baseb + 64 : 1 : baseb + 127)

x(baseb + 192 : 1 : baseb + 255)

...

x(baseb + 960 : 1 : baseb + 1023)

































































.(4.7)

The two halves in Equation 4.7 are two chunks of size S1 = 512. Within each

chunk of size 512, the stride argument is a1N1 = 2 × 64 = 128. Since there are
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four blocks of size 1024 in Equation 4.6, there are a total of 4 × 2 = 8 chunks

of size S1 = 512 in t1, and each chunk can be represented by x(base, 128, 64),

where base = i0 × 1024 + i1 × 64, 0 ≤ i0 < 4, 0 ≤ i1 < 2. The executor uses

a recursive call to apply F512 to these chunks. The i-th recursive call, where

i = 2i0 + i1, takes the chunk starting at base = i0 × 1024 + i1 × 64.

In each recursive call, the input vector is x(base, 128, 64). When applying the

given factorization, in the recursive call, the executor permutes the input vector

with P2, which produces a temporary vector

t2 = P2x(base, 128, 64)

= (I8 ⊗ L32
2 ⊗ I2)



















x(base : 1 : base + 63)

x(base + 128 : 1 : base + 191)

...

x(base + 896 : 1 : base + 959)



















. (4.8)

In Equation 4.8, each block starting at base′b = base + i0 × 128, 0 ≤ i0 < 8 is

permuted with L32
2 ⊗ I2. The permuted result for each block is

(L32
2 ⊗ I2)x(base′b : 1 : base′b + 63) =

































































x(base′b : 1 : base′b + 1)

x(base′b + 4 : 1 : base′b + 5)

...

x(base′b + 60 : 1 : base′b + 61)





































x(base′b + 2 : 1 : base′b + 3)

x(base′b + 6 : 1 : base′b + 7)

...

x(base′b + 62 : 1 : base′b + 63)

































































.

The two halves in the above equation are chunks of size S2 = 32. Within each

chunk, the stride argument is a2N2 = 2 × 2 = 4. There are 8 × 2 = 16 such

chunks in t2, each of which starts at base + i0 × 128+ i2 × 2. The executor uses

a no-twiddle codelet to apply F32 to each of the resulting chunks of size 32.
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2. F4096 = F4 ⊗ F128 ⊗ F8

In this case, the dimensionless Cooley-Tukey factorization is

y = F4096x

= (F8 ⊗ I512)D1(I8 ⊗F512)P1x

= (F8 ⊗ I512)D1(I8 ⊗ ((F16 ⊗ I32)D2(I16 ⊗ F32)P2))P1x

= ((F4 ⊗ F2) ⊗ I512)D1(I8 ⊗ ((F16 ⊗ I32)D2(I16 ⊗ (F4 ⊗ F8))P2))P1x,

where

P1 = I4 ⊗ L128
2 ⊗ I8,

D1 = I4 ⊗ T 128
64 ⊗ I8,

P2 = L64
16 ⊗ I32,

D2 = T 64
4 ⊗ I32.

The corresponding parameters (in Theorem 3) are

l1 = 2, N1 = 4, a1 = 2, b1 = 64, N1 = 8

l2 = 1, N2 = 1, a2 = 16, b2 = 4, N2 = 8

The computation starts from permuting input vector x with P1.

t1 = P1x = (I4 ⊗ L128
2 ⊗ I8)x (4.9)

=



















L128
2 ⊗ I8

L128
2 ⊗ I8

L128
2 ⊗ I8

L128
2 ⊗ I8





































x(0 : 1 : 1023)

x(1024 : 1 : 2047)

x(2048 : 1 : 3071)

x(3072 : 1 : 4095)



















Each block x(baseb : 1 : baseb + 1023), where baseb = i0 × 1024, 0 ≤ i0 < 4, is
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permuted with L128
2 ⊗ I8.

t1(baseb : 1 : baseb + 1023) = (L128
2 ⊗ I8)x(baseb : 1 : baseb + 1023)

= (L128
2 ⊗ I8)



















x(baseb : 1 : baseb + 7)

x(baseb + 8 : 1 : baseb + 15)

...

x(baseb + 1016 : 1 : baseb + 1023)



















=

































































x(baseb : 1 : baseb + 7)

x(baseb + 16 : 1 : baseb + 23)

...

x(baseb + 1008 : 1 : baseb + 1015)





































x(baseb + 8 : 1 : baseb + 15)

x(baseb + 24 : 1 : baseb + 31)

...

x(baseb + 1016 : 1 : baseb + 1023)

































































. (4.10)

The two halves in Equation 4.10 are chunks of size S1 = 512. Within each

chunk, the stride argument is a1N1 = 2× 8 = 16. There are a total of 4× 2 = 8

such chunks. The executor makes recursive calls to apply F512 to these chunks.

The i-th recursive call, where i = 2i0 + i1, takes the block starting at base =

i0 × 1024 + i1 × 8, 0 ≤ i0 < 4 and 0 ≤ i1 < 2.
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For each chunk, the executor permutes the input vector with P2.

t2 = P2x(base, 16, 8)

= (L64
16 ⊗ I8)



















x(base : 1 : base + 7)

x(base + 16 : 1 : base + 23)

...

x(base + 1008 : 1 : base + 1015)



















=





















































































x(base : 1 : base + 7)

x(base + 256 : 1 : base + 263)

x(base + 512 : 1 : base + 519)

x(base + 768 : 1 : base + 775)

























x(base + 16 : 1 : base + 23)

...







...


















x(base + 240 : 1 : base + 247)

x(base + 496 : 1 : base + 503)

x(base + 752 : 1 : base + 759)

x(base + 1008 : 1 : base + 1015)





















































































. (4.11)

The size of each chunk in Equation 4.11 is S2 = 32. Within each chunk, stride′ =

a1a2N2 = 2 × 16 × 8 = 256, block′ = 8 and base′ = base + i × 16, 0 ≤ i < 16.

Each chunk of size 32 can be represented as x(base′, 256, 8), and the executor

uses a no-twiddle codelet to apply F32 to each of the chunks.

4.1.3 Dimensionless Executor

The program in Figure 4.1 implements the dimensionless FFT using a recursive ex-

ecutor with the addressing parameters from Theorem 3. It differs from the program

in Figure 2.3 in that the permutations are implemented using addressing given by
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Table 4.1: The precision between the simulator (Figure 4.1) and FFTW

Transform ||y1 − y2||∞

F2 ⊗ F512 2.67 × 10−18

F4 ⊗ F256 1.47 × 10−18

F8 ⊗ F128 1.16 × 10−18

F16 ⊗ F64 1.04 × 10−18

F32 ⊗ F32 3.82 × 10−18

F64 ⊗ F16 1.99 × 10−18

F128 ⊗ F8 1.50 × 10−18

F256 ⊗ F4 2.17 × 10−18

F512 ⊗ F2 4.11 × 10−18

F2 ⊗ F2 ⊗ F256 1.47 × 10−18

F2 ⊗ F8 ⊗ F64 1.04 × 10−18

F4 ⊗ F2 ⊗ F128 1.16 × 10−18

F32 ⊗ F4 ⊗ F8 3.82 × 10−18

F2 ⊗ F128 ⊗ F4 3.44 × 10−19

F2 ⊗ · · · ⊗ F2 2.32 × 10−21

stride and block parameters. The purpose of this program is to validate Theorem 3

and to prepare for the modification to FFTW needed to support the dimensionless

FFT. Table 4.1 compares the results of several multi-dimensional DFTs computed

using this implementation of the dimensionless FFT and the row-column algorithm

implemented in FFTW. All transforms are of size 1024 and are applied to the vector

x = (1 : 1024)T . Let y1 be the result computed by FFTW and y2 be the result

computed by this implementation, Table 4.1 reports ||y1 − y2||∞, the norm of the

difference of the two results. Table 4.1 shows that the results computed by the two

program are nearly identical.
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void my_executor(fftw_complex *in, fftw_complex *out, int N, int *n,

int rank, int stride, int howmany, int *table)

{ /* Input: rank: a positive integer

* n: an integer array of size rank

* N: an integer, it should be the product of n’s

* stride: the stride argument

* howmany: the size within each block

* table: the split table */

fftw_complex *tw; /* the twiddle factor */

int R, S, l, split, N1, N2, a, b, stride1;

int i,j,k;

if (N<64){/* no_twiddle codelet simulator */

my_fftwnd_notw_codelet(in, out, stride, 1, N, howmany, n, rank);

}else{

/* find the factorization in the split table */

R = (int) pow(2,table[log2(N)]);

S = N/R;

/* Set the corresponding variables

* l is the index of n’s that to be factorized, n[l] = ab

* N1 is the product of n[0] to n[l-1]

* N2 is the product of n[l+1] to n[rank] */

set_variables(n, rank, R, S, &a, &b, &N1, &N2, &l);

/* store n[l] temporarily */

split = n[l];

/* determine the stride permutation argument */

if (N2 >= howmany)

stride1 = a*N2;

else

stride1 = a*stride;

n[l]=b;

for (i=0; i<N1; ++i)

for (j=0; j<a; ++j){

// recursive call the executor

my_executor(in+i*N/N1+j*N2, out+i*N/N1+j*b*N2, N/N1/a,

n+split, rank-split,stride1, b, table);}

n[l] = split; /*restore the dimension information */

/* create the twiddle factor */

tw = twiddleMD(N1, split, b, N2);

/* update the dimension information */

n[l] = a;

/* twiddle codelet simulator */

my_fftwnd_twiddle_codelet(out, tw, R, S, n, l+1);

/* restore the dimension information */

n[l] = split;

free(tw);

}

Figure 4.1: The Executor Simulator
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4.2 Modifications to FFTW to Support the Dimensionless FFT

This section describes the modifications to FFTW that are needed to support the

dimensionless FFT. Three modifications are required: 1) the plan must be modified

to include dimension information and the values of the twiddle factorization need

to be changed according to the dimension. 2) The planner must be modified to

generate the additional information to the plan. 3) The executor must be modified

to incorporate to the addressing in Theorem 3.

4.2.1 Modified Plan

The following FFTW data structures are modified to include additional dimension

information.

1. fftw plan data structure

Figure 4.2 shows the modified fftw plan data structure in dimensionless FFT.

Compared with Figure 3.3, the argument n is replaced with the following three

arguments.

• rank is a nonnegative integer equal to the dimensions of the transform.

• n is a pointer to an integer array of size rank, the size of the transform in

each dimension.

• N is the size of a given transform, and N =
∏rank−1

i=0 ni.

2. fftw plan node data structure

The modified fftw plan node is shown in Figure 4.3. Changes similar to those

made to fftw plan are made to fftw plan node. (Compare to Figure 3.4)

3. fftw codelet desc data structure

Figure 4.4 shows the updated fftw codelet desc. The modifications are similar

to those made to fftw plan.
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struct fftw_plan_struct {

int N;

int rank;

int *n;

int refcnt;

fftw_direction dir;

int flags;

int wisdom_signature;

enum fftw_node_type wisdom_type;

struct fftw_plan_struct *next;

fftw_plan_node *root;

double cost;

fftw_recurse_kind recurse_kind;

int vector_size;

};

typedef struct fftw_plan_struct *fftw_plan;

Figure 4.2: Updated fftw plan data structure

4. fftw twiddle data structure

The updated fftw twiddle data structure is shown in Figure 4.5. The two addi-

tional arguments a and b allow fftw twiddle to store twiddle factors of the form

Ia ⊗ T n
s ⊗ Ib, rather than simply T n

s as was the case originally.

4.2.2 Modified Recursive Planner

The FFTW planner uses dynamic programming to determine the best possible split

to use for a given size transform. Each possible split is timed using the best plans

found for the smaller sizes. The best plans for smaller sizes are stored in a linked list

that is created during the search.

For the dimensionless FFT the same search is performed; however, the smaller

transforms used for a given split depend on the dimension of the transform. Moreover,

since all multi-dimensional transform are supported there are many possibilities for

the smaller transforms. For example, there are θ(K2) two-dimensional transforms
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typedef struct fftw_plan_node_struct {

enum fftw_node_type type;

union {

/* nodes of type FFTW_NOTW */

struct {

int size;

int rank;

int *n;

fftw_notw_codelet *codelet;

const fftw_codelet_desc *codelet_desc;

} notw;

/* nodes of type FFTW_TWIDDLE */

struct {

int size;

int rank;

int *n;

int n1,n2,a,b;

fftw_twiddle_codelet *codelet;

fftw_twiddle *tw;

struct fftw_plan_node_struct *recurse;

const fftw_codelet_desc *codelet_desc;

} twiddle;

} nodeu;

int refcnt;

} fftw_plan_node;

Figure 4.3: Updated fftw plan node data structure
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typedef struct {

const char *name; /* name of the codelet */

void (*codelet) (); /* pointer to the codelet itself */

int size; /* size of the codelet */

fftw_direction dir; /* direction */

enum fftw_node_type type; /* TWIDDLE or NO_TWIDDLE */

int signature; /* unique id */

int ntwiddle; /* number of twiddle factors */

const int *twiddle_order; /*

* array that determines the order

* in which the codelet expects

* the twiddle factors

*/

int *n; /* the dimensions */

int rank; /* rank, number of dimensions */

} fftw_codelet_desc;

Figure 4.4: Updated fftw codelet desc data structure

typedef struct fftw_twiddle_struct{

int n;

const fftw_codelet_desc *cdesc;

fftw_complex *twarray;

struct fftw_twiddle_struct *next;

int refcnt;

int a,b; /*eye(a) tensor twiddle(n,s) tensor eye(b) */

} fftw_twiddle;

Figure 4.5: Updated fftw twiddle data structure
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and θ(K3) three-dimensional transforms of size 2K.

The planner was modified to include dimension information and the logic necessary

to determine which smaller multi-dimensional transforms are required for each split.

Furthermore a hash table was used to store the optimal plans formed for smaller sizes.

The following functions were modified to support these changes.

• fftw create plan

• fftw create plan specific

• planner

• fftw lookup

• planner wisdom

• planner normal

• fftw wisdom lookup

• fftw wisdom add

• fftw make node notw

• fftw make node twiddle

• ftw make plan

• fftw complete twiddle

• fftw measure runtime

• fftw compute cost

• run plan hooks

• fftw create twiddle
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• fftw compute twiddle

4.2.3 Modified Recursive Executor

The executor was modified to incorporate the addressing required by Theorem 3. In

particular an extra parameter is required to pass the block information for Theorem

3. The initial call used to compute y = (Fn1
⊗ · · · ⊗ Fnt)x must set stride = block =

n2 · · ·nt to be satisfied. Furthermore, logic was added to determine the inputs for the

recursive calls from the dimensions of the transform. The following functions were

modified to support these changes.

• fftw

• fftw executor simple

• executor many
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Chapter 5: Codelets for the Dimensionless FFT

A collection of multi-dimensional DFT codelets are required for the base case of the

recursive implementation of the dimensionless FFT. It is necessary to have codelets

for all multi-dimensional DFTs of each base case size. Since there are 2n−1 multi-

dimensional DFTs of size N = 2n, the number of codelets needed for base cases upto

size B = 2b =
∑b

i=1 2i−1 = 2b − 1. For codelets upto size 64, 63 codelets are needed.

Moreover, for each implementation platform, the codelets must be implemented and

optimized. Thus, tools are needed for automatically implementing and optimizing

the codelets.

FFTW provides a codelet generator for one-dimensional DFTs [9]. Their codelet

generator takes an input integer N and produces optimized unrolled code to com-

pute the FFT of size N . The codelet generator selects one of several possible FFT

algorithms depending on the size and generates an expression DAG (directed acyclic

graph) corresponding to the algorithm. The DAG is then passed to a simplifier that

performs various transformations such as common sub-expression elimination. The

simplified DAG is passed to an FFT specialized scheduler, which improves the locality,

and the schedule is unparsed to produce C code.

The FFTW codelet generator is currently restricted to one-dimensional DFTs,

and can not be used to build the multi-dimensional codelets library.

An alternative approach to generate optimized DFT code is provided by the SPI-

RAL system [11]. Unlike the FFTW codelet generator, there is a language for

describing algorithms and a compiler that translates the algorithms to code. This

enables SPIRAL to generate code for a wide variety of transforms in addition to the

DFT. In particular it can be used to generate all of the multi-dimensional DFTs that

are required for the dimensionless FFT.

Because of this generality, SPIRAL was chosen to build the codelet library. This
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chapter first gives an overview of the SPIRAL system [11], and then shows how to

use SPIRAL to build a multi-dimensional codelet library.

5.1 Overview of the SPIRAL System

The following summary is take from [11], where additional details can be found.

SPIRAL is a system for automatically implementing and optimizing fast signal

transforms. Given a transform of a specified size, SPIRAL produces an optimized

implementation for a given computer platform. Algorithms are described by mathe-

matical formulas, represented in the signal processing language (SPL), and SPIRAL

uses a formula generator to generate alternative algorithm for the specified trans-

form. Formulas are translated into programs, and a search engine is used to search

for the fastest implementation as measured by runtime on a given machine. Using

runtime as a performance measure allows SPIRAL to adapt the generated code to a

specific machine. Given a signal transform, the formula generator produces an algo-

rithm, encoded as an SPL formula, to compute the transform. The formula translator

translates the SPL formula into a C or Fortran program to obtain a specific imple-

mentation. The runtime is fed back to the search engine, which controls the formula

generator and translator to search for a fast formula and implementation. Figure 5.1

(taken from the SPIRAL website www.spiral.net) shows the architecture and flow of

the SPIRAL system.

This section gives an overview of the formula generator, formula translator and

search engine. It shows how SPIRAL implements and optimizes a given transform on

a specific machine.

5.1.1 Formula Generator

A linear discrete signal transform can be represented by a transform matrix M . Com-

puting the transform is equivalent to computing the matrix-vector product y = Mx,
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Figure 5.1: The Process of SPIRAL
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where x and y are vectors storing the input and output signals. Fast algorithms for

computing a DSP transform represented by the transform matrix M can be viewed

as a factorization of M into a product of highly structured sparse matrices.

In SPIRAL, algorithms are represented by formulas containing products of struc-

tured sparse matrices. Transforms are specified by parameterized symbols, called

non-terminals, such as DFTN, and algorithms are derived using break-down

rules, that rewrite non-terminals in terms of other non-terminals and constructs

in the SPL language. A sample rule corresponding to the Cooley-Tukey factorization

is

DFTN → (DFTR ⊗ IS)T N
S (IR ⊗ DFTS)LN

R , (5.1)

where N = RS. The symbols on the right hand side can be other non-terminals

(bold), or matrix operators and symbols such as LN
R and T N

S called terminals in the

SPL language. Rewrite rules are applied recursively until there are no non-terminals.

The resulting fully expanded formula represents an algorithm. In the base case, there

are rules that replace non-terminals with symbols encoding the matrix corresponding

to the specified transform. An example of such a rule is

DFT2 → F2 =







1 1

1 −1






. (5.2)

The derivation of an algorithm through a sequence of rules can be encoded in a

tree called a rule tree. Since rules such as the rule in Equation 5.1 can be applied in

many different ways (different factorizations of N), there are many different rule trees

for a given non-terminal and hence it is possible to derive many different algorithms

for a given transform. Figure 5.2 shows two possible rule trees for DFT8. The
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DFT8

DFT4 DFT2

DFT2 DFT2 F2

F2 F2

DFT8

DFT2 DFT4

F2 DFT2 DFT2

F2 F2

Figure 5.2: Ruletrees of formulas in Equation 5.3 and Equation 5.4

derivation for these trees are shown in Equation 5.3 and 5.4.

DFT8 → (DFT4 ⊗ I2)T
8
2 (I4 ⊗ DFT2)L

8
4 (5.3)

→ (((DFT2 ⊗ I2)T
4
2 (I2 ⊗ DFT2)L

4
2) ⊗ I2)T

8
2 (I4 ⊗ DFT2)L

8
4

→ (((F2 ⊗ I2)T
4
2 (I2 ⊗ F2)L

4
2) ⊗ I2)T

8
2 (I4 ⊗ F2)L

8
4

DFT8 → (DFT2 ⊗ I4)T
8
4 (I2 ⊗ DFT4)L

8
2 (5.4)

→ (DFT2 ⊗ I4)T
8
4 (I2 ⊗ ((DFT2 ⊗ I2)T

4
2 (I2 ⊗ DFT2)L

4
2))L

8
2

→ (F2 ⊗ I4)T
8
4 (I2 ⊗ (((F2) ⊗ I2)T

4
2 (I2 ⊗ F2)L

4
2)L

8
2

After a rule tree is fully expanded and an algorithm is derived, the formula gener-

ator converts the rule tree to an SPL program, and passes it to the formula translator.

5.1.2 Formula Translator

SPL (Signal Processing Language) [10] is a language for representing structured ma-

trix factorizations. The formulas in SPL are constructed from general matrices, pa-

rameterized matrices such as the identity matrix, and matrix operators such as matrix

composition and the tensor product(Figure 5.3). An SPL program represents a for-

mula corresponding to a factorization of a matrix M . For example, Figure 5.4 shows
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(1) General matrices, such as

(matrix ((a11 ... a1n) ... (am1 ... amn)))

(diagonal (a11 ... ann))

(2) Parameterized matrices, such as

(I N) ; identity matrix

(F N) ; Fourier transform matrix

(L N R) ; Stride permutation matrix

(T N S) ; twiddle matrix

(3) Matrix operation, such as

(compose A1 ... An) ; matrix product

(tensor A1 ... An) ; tensor product

(direct-sum A1 ... An) ; direct sum

Figure 5.3: Components of SPL

the SPL program corresponding to the algorithm shown in Equation 5.3, which is a

factorization of F8. The formula can be interpreted as a program, which uses the struc-

ture specified by the factorization to compute the matrix-vector product y = Mx.

The formula translator accepts an SPL program and produces a subroutine, in C or

Fortran, for computing the corresponding matrix-vector product.

The formula translator first translates an SPL program into an abstract syntax

tree (AST). Figure 5.5 shows the syntax tree for the SPL program in Figure 5.4.

The AST is then translated to intermediate code, which is further optimized prior to

generating the final code.

The translator inserts code for the parameterized matrices and combines the re-

sulting code corresponding to the operators occurring in the formula:

1. (Compose A B)

In this case, the formula translator generates code to compute two matrix-vector

products.

t = B x;

y = A t;
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(compose

(tensor

(compose

(tensor (F 2) (I 2))

(T 4 2)

(tensor (I 2) (F 2))

(L 4 2)

)

(I 2))

(T 8 2)

(tensor (I 4)(F 2))

(L 8 4)

)

Figure 5.4: SPL program for the algorithm in Equation 5.3

compose

tensor (T 8 2) tensor (L 8 4)

compose (I 2) (I 4) (F 2)

tensor (T 4 2) tensor (L 4 2)

(F 2) (I 2) (I 2) (F 2)

Figure 5.5: The AST corresponding for the SPL program in Figure 5.4
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2. (tensor (I n) (A m))

The computation In⊗Am performs the matrix-vector product for n consecutive

blocks of size m of input vector x. Therefore, the formula translator generates

the following code to compute it.

for i=0 to n-1

y(i*m:1:(i+1)*m-1) = A x(i*m:1:(i+1)*m-1);

3. (tensor (A m) (I n))

It is similar to the previous case with a stride permutation argument m. There-

fore the corresponding code is:

for i=0 to n-1

y(i:m:mn-1) = A x(i:m:mn-1);

4. (tensor A B)

Assume that A is an n × n matrix and B is an m × m matrix. Since A ⊗ B =

(A⊗ Im)(In ⊗B), the computation can be implemented using the previous two

cases.

The resulting code is optimized through loop unrolling, intrinsic function eval-

uation, type transformation, and standard compiler optimization such as common

subexpression elimination and construct folding. The details of the optimization are

given in [10]. After the code is optimized, the formula translator outputs the sub-

routine in C or Fortran.

5.1.3 Search Engine

SPIRAL uses search to select the best algorithm for a given transform on a given

computer architecture. Formulas are generated, translated to code, and the resulting
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code is executed and timed. The runtime is used to guide the generation of formulas

in order to find a formula whose runtime is as fast as possible. Since there are too

many algorithms (Table 3.1) to exhaustively generate all possibilities, various search

strategies are used to find algorithms that are close to optimal. Search strategies sup-

ported by SPIRAL include exhaustive search, hill climbing, dynamic programming,

and an evolutionary algorithm called STEER [11].

5.2 Building a Multi-dimensional Codelet Library

A library of multi-dimensional DFTs is built using the SPIRAL system. A program

was written in SPIRAL to generate all of the necessary multi-dimensional DFTs,

and the SPIRAL search engine was used to generate fast implementations. Note

that in order to insert the generated code into the dimensionless FFT program, some

post-processing was required.

5.2.1 Generating Multi-Dimensional DFTs

A multi-dimensional DFT FN1
⊗ · · · ⊗ FNt of size N = N1 · · ·Nt, with Ni = 2ni and

N = 2n, corresponds to a unique composition (ordered partition) n1 + · · · + nt of n.

All possible multi-dimensional DFTs of size N = 2n can be obtained by generating

all compositions of n. There is a one-to-one mapping from (n−1)-bit binary numbers

onto the set of compositions of n.

The mapping can be obtained by listing n ones with a bit between each pair of

consecutive ones. Consecutive ones separated by zero-bits are grouped, and bits set

to one are used to separate the different groups. The composition is obtained by

adding the ones in each group. All possible compositions of n are obtained by using

the 2n−1 (n − 1)-bit binary numbers. Figure 5.6 shows the 8 compositions of 4 and

the mapping between them and the eight 3-bit binary numbers.

The function Int2Part(n,i) maps an integer 0 ≤ i < 2n−1 to the correspond-
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Figure 5.6: Partitions of N=16
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ing composition and the function Part2MDFT creates an SPL expression for the

corresponding multi-dimensional DFT. For example, Int2Part(4,7) outputs the list

[1, 1, 1, 1], and Part2MDFT([1,1,1,1]) outputs the SPL non-terminal TensorSPL(

Transform(“DFT”, 2),Transform(“DFT”, 2),Transform“DFT”, 2),Transform(“DFT”,

2)), which corresponds to the multi-dimensional DFT F2 ⊗ F2 ⊗ F2 ⊗ F2. SPL non-

terminals for all multi-dimensional DFTs of size N = 2n can be generated using these

two functions.

5.2.2 Finding Fast Implementations of Small Multi-dimensional DFTs

Fast implementations of all 63 multi-dimensional DFTs of size upto 64 were obtained

using the functions from the previous section and SPIRAL. The resulting implemen-

tations were timed on the computer described in Section 6.1. Table 5.1 lists the

runtime for all multi-dimensional DFTs of size 64.

5.2.3 Building the Codelet Library

The codelet library was built from the fastest implementations found by SPIRAL;

however, the resulting code had to be modified to support the addressing required

by the dimensionless FFT (see Section 4.1.1). Additional parameters also had to be

inserted to support the required calling convention.

The following steps were used for each multi-dimensional DFT.

• Generate SPL for the algorithm found by SPIRAL’s search engine.

For example, Figure 5.8 shows the SPL file (named as F2 2 2 2.spl) for DFT2⊗

DFT2 ⊗ DFT2 ⊗ DFT2.

• Compile the SPL file using options to modify the addressing

Once the SPL files are output, they are compiled with the following command.

With these compile flags, the SPL compiler adds two stride arguments, sx and
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# Convert integer to ordered partition

# Input: n, i, positive integers

# 0 <= i < 2^(n-1)

# Output: an ordered partition of n

Int2Part := function(n,i)

local N, count, i0, b, j;

N := [];

count := 1;

i0 := i;

for j in [1..n-1] do

b := i0 mod 2;

if b = 0 then

count := count + 1;

else

Add(N, count);

count := 1;

fi;

i0 := Int(i0/2);

od;

Add(N,count);

return N;

end;

Part2MDFT := function(p)

local T;

if Length(p) = 1 then

return Transform("DFT", 2^p[1]);

else

T := List(p,n->Transform("DFT",2^n));

return TensorSPL(T);

fi;

end;

Figure 5.7: Function Int2Part and Part2MDFT
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Table 5.1: Runtime for multi-dimensional DFTs of size 64, unit: nanosecond

Dimension 64 2,32 4,16 2,2,16

Runtime 2384 2594 3147 3052

Dimension 8,8 2,4,8 4,2,8 2,2,2,8

Runtime 2384 2556 2289 2480

Dimension 16,4 2,8,4 4,4,4 2,2,4,4

Runtime 3033 2556 2632 2270

Dimension 8,2,4 2,4,2,4 4,2,2,4 2,2,2,2,4

Runtime 2480 2117 3242 2594

Dimension 32,2 2,16,2 4,8,2 2,2,8,2

Runtime 2480 2708 2937 2422

Dimension 8,4,2 2,4,4,2 4,2,4,2 2,2,2,4,2

Runtime 2422 2422 2918 2594

Dimension 16,2,2 2,8,2,2 4,4,2,2 2,2,4,2,2

Runtime 2632 2575 2041 2193

Dimension 8,2,2,2 2,4,2,2,2 4,2,2,2,2 2,2,2,2,2,2

Runtime 2613 2308 3185 2556

; This file is generated from GAP by the

; function ExportSPL

( tensor

( F 2 )

( F 2 )

( F 2 )

( F 2 )

)

Figure 5.8: SPL file, F2 ⊗ F2 ⊗ F2 ⊗ F2
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/*

! +-----------------------------------------------+

! | Generated by SPL Compiler 3.29 |

! +-----------------------------------------------+

! Command-line options: -x language=c -o F2_2_2_2.c -x

anystride -x codetype=real -x datatype=complex

!

*/

/* This file is generated from GAP by the*/

/* function ExportSPL*/

/*

! The SPL Program: (tensor (F 2)(tensor (F 2)(tensor (..)(..))))

! node size: 16 X 16

*/

#include <fftw.h>

void F2_2_2_2(x,y,sx,sy)

double *x, *y;

int sx;

int sy;

{

/* computation */

f0 = x[0] - x[2*sx];

.

.

.

}

Figure 5.9: Computing F2 ⊗ F2 ⊗ F2 ⊗ F2 with stride permutation

sy, to each implementation. The result is shown in Figure 5.9.

spl F2_2_2_2.spl -xlanguage=c -o F2_2_2_2.c -xanystride -xcodetype=real

-xdatatype=complex

After this step, two copies of the compiled C functions are used to generate the

twiddle and no-twiddle codelets, respectively.

• Twiddle codelets
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The following modifications were made to generate the twiddle codelets.

– Replace the argument fftw complex *y with fftw complex *w in the proto-

type. Although both arguments (y and w) are of the same type, y refers

to the output while w refers to the twiddle factor.

– Remove the argument sy in the prototype, and replace all occurrences of

sy with sx in the function.

– Add code to multiply the twiddle factor with the input vector before com-

puting the DFT.

– Add the arguments int m and int dist in the function prototype. The

argument m refers to the number of DFTs that are computed, and dist

refers the initial address shift between the input/output arrays in each

DFT. Then add a loop with m iterations to compute multiple DFTs.

A sample twiddle codelet is shown in Figure 5.10.

• no-twiddle codelets

The following modifications are made to generate the no-twiddle codelets.

– Add an argument int block to the function prototype. This argument refers

the block size of permutation. (See Section 4.1.1)

– Replace each index k*sx with k/block*sx+k%block.

A sample no-twiddle codelet is shown in Figure 5.11.
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#include <fftw.h>

void ftw2_2_2_2(x,w,sx,m,dist)

double *w, *x;

int sx;

int m;

int dist;

{

for (i=m; i>0; i=i-1, inout=inout+dist*2, w=w+dist*2){

for (j=0; j<16; ++j){

/* inout array multi-lies by the twiddle factor */

tmp1 = inout[2*sx*j];

tmp2 = inout[2*sx*j+1];

tmp3 = w[2*j];

tmp4 = w[2*j+1];

inout[2*sx*j] = tmp1*tmp3 - tmp2*tmp4;

inout[2*sx*j+1] = tmp2*tmp3 + tmp1*tmp4;

}

/* computation */

f0 = inout[0] - inout[2*sx];

.

.

.

}

}

Figure 5.10: Twiddle Codelets of F2 ⊗ F2 ⊗ F2 ⊗ F2
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#include <fftw.h>

void F2_2_2_2(x,y,sx,sy,b)

double *x, *y;

int sx;

int sy;

int b;

{

/* computation */

f0 = x[0] - x[2/block*sx+2%block];

.

.

.

}

Figure 5.11: No-twiddle Codelets of F2 ⊗ F2 ⊗ F2 ⊗ F2
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Chapter 6: Performance

This chapter discusses an empirical study of the implementation of the dimensionless

FFT presented in this thesis. A comparison is made with the row-column algorithm

currently available in FFTW and it is shown that for some dimensions, the dimension-

less FFT is faster and for others it is slower. All experiments were performed on a 550

MHz Pentium III processor with 16K L1 cache, 512K L2 cache and 512MB memory

running Mandrake 9.0 Linux. Timings were performed with multi-dimensional DFTs

of size 220. Each timing was performed five times and the average time was reported.

6.1 Performance of the Row-Column Algorithm

Recall that the motivation for using the dimensionless FFT was that for particular

dimensions the row-column algorithm constrains the sizes of the recursive calls in the

FFT and that these constraints may preclude the optimal breakdown strategy needed

to improve locality and best utilize cache. The dimensionless FFT allows the same

breakdown strategy to be used independent of dimension.

Figure 6.1 shows the performance of FFTW’s row-column algorithm for differ-

ent dimensions (all two-dimensional and selected three-dimensional DFTs were used

- see Table 6.1). The figure shows that the runtime of the row-column algorithm

varies dramatically as the dimension is changed. Furthermore, there are multi-

dimensional DFTs where the row-column algorithm is substantially slower than the

one-dimensional DFT of the same size.

6.2 Performance of the Dimensionless FFT

Figure 6.2 shows the ratio of the dimensionless FFT compared to the row-column

algorithm in FFTW, using the same DFTs used in Figure 6.1. It shows that the
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Figure 6.1: The runtime ratio of multi-dimensional DFT vs. one-dimensional DFT

in FFTW

Table 6.1: Multi-dimensional DFTs that were tested in FFTW

Transform 1 2 3 4 5 6

Dimension 220 2, 219 22, 218 23, 217 24, 216 25, 215

Transform 7 8 9 10 11 12

Dimension 26, 214 27, 213 28, 212 29, 211 210, 210 211, 29

Transform 13 14 15 16 17 18

Dimension 212, 28 213, 27 214, 26 215, 25 216, 24 217, 23

Transform 19 20 21 22 23 24

Dimension 218, 22 219, 2 26, 26, 28 26, 27, 27 26, 28, 26 27, 26, 27

Transform 25 26 27 28 29

Dimension 27, 27, 26 27, 28, 25 28, 26, 26 28, 27, 25 28, 28, 24
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Figure 6.2: The runtime ratio of dimensionless FFT to FFTW

dimensionless FFT is faster when computing the multi-dimensional DFTs whose run-

time is substantially slower than the one-dimensional DFT using the row-column

algorithm. However, the dimensionless FFT was not faster in all cases where the one-

dimensional FFT was faster than the row-column algorithm. A possible explanation

for this is given by the fact that the one-dimensional FFT using the dimensionless

infrastructure is about 1.5 times slower than FFTW’s one-dimensional FFT. This

suggests that additional overhead is introduced or the codelets generated by SPIRAL

are slower. This is explained in the next section.

Unlike the row-column algorithm, the runtime for the dimensionless FFT should

be independent of dimension (this is not quite true since there are fewer non-trivial

multiplications in the twiddle codelets as the number of dimensions increases). Figure

6.3 shows that the runtimes for the dimensionless FFT do not vary as much as the

row-column algorithm, and that the runtimes for multi-dimensional DFTs are less

than the runtime for the one-dimensional DFT.

6.3 Performance Evaluation

In the previous section it was shown that the dimensionless FFT can outperform the

row-column algorithm for some DFTs. However it did not provide the anticipated
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Figure 6.3: The runtime ratio of multi-dimensional DFT to one-dimensional DFT in

the dimensionless FFT

performance gain for some dimensions and a significant slowdown was seen for the

one-dimensional DFT when computed using the dimensionless infrastructure. In this

section a performance model is used to evaluate the cause for this discrepancy. It

is shown that much of the degraded performance for the dimensionless FFT on the

one-dimensional DFT, and other dimensions when expected gain was not obtained,

is due to the performance of the codelets generated using SPIRAL. The SPIRAL

codelets have similar performance [11] when unit stride is used; however, in larger

FFTs when the twiddle codelets are called multiple times with non-unit stride, the

performance is worse. This largely explains why the performance of the dimensionless

FFT was not as good as expected, and shows that this is not an inherent limitation,

but rather something that could be improved with better codelets.

6.3.1 Comparison of Codelets

In both FFTW and the dimensionless FFT, the executor calls a no-twiddle codelet

multiple times to compute y = (Is ⊗ Fn)Lns
s x and y = (Is ⊗ Fn)Px respectively,

where n is the size of the codelet, s is the number of calls, and P is a permutation. In

both packages s ≤ 64. In FFTW, the input vector is accessed at stride, while in the

dimensionless FFT the input vector is accessed in a different way (See Section 4.1.1).
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Table 6.2: The Runtime of FFTW’s no-twiddle codelet in seconds

iterations 2 4 8 16 32 64

fn 2 6.6e-6 1.22e-5 2.22e-5 4.44e-5 8.70e-5 1.72e-4

fn 4 1.18e-5 2.26e-5 4.36e-5 8.60e-5 1.71e-4 3.55e-4

fn 8 2.26e-5 4.42e-5 8.66e-5 1.72e-4 3.76e-4 7.16e-4

fn 16 4.98e-5 9.18e-5 1.78e-4 3.63e-4 7.32e-4 1.42e-3

fn 32 9.92e-5 1.87e-4 3.71e-4 7.71e-4 1.53e-3 2.83e-3

fn 64 2.27e-4 4.20e-4 7.92e-4 1.49e-3 3.15e-3 5.80e-3

Table 6.3: The Runtime of dimensionless no-twiddle codelet in seconds

iterations 2 4 8 16 32 64

fn 2 6.8e-6 1.3e-5 2.44e-5 4.82e-5 9.70e-5 1.88e-4

fn 4 1.28e-5 2.4e-5 4.72e-5 9.26e-5 1.85e-4 3.95e-4

fn 8 2.6e-5 4.76e-5 9.34e-5 1.85e-4 4.24e-4 7.75e-4

fn 16 5.42e-5 1.09e-4 1.93e-4 3.96e-4 7.96e-4 1.63e-3

fn 32 1.17e-4 2.1e-4 4.13e-4 8.06e-4 1.55e-3 3.05e-3

fn 64 2.75e-4 5.13e-4 9.78e-4 1.89e-3 3.64e-3 7.41e-3

Therefore experiments were made to test the performance of FFTW’s no-twiddle

codelets and the no-twiddle codelets generated by SPIRAL. Table 6.2 shows the

runtime of FFTW’s no-twiddle codelets for different value of s. Table 6.3 shows the

runtime of the one-dimensional no-twiddle codelets generated for the dimensionless

FFT for same values of s as in Table 6.2. The comparison is summarized in Figure

6.4.

The same experiments were made on the twiddle codelets. In FFTW, the executor

calls a twiddle codelet to compute y = (Fn⊗Is)T
ns
s y, where n is the codelet size. The

twiddle codelet contains a loop to compute s iterations of Fn. For the dimensionless

FFT, the executor uses twiddle codelets in the same way to compute y = (Fn⊗Is)Dy,
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Table 6.4: The Runtime of FFTW’s twiddle codelet in seconds

iterations 2 4 8 16 32 64 128 256 512

ftw 2 2e-6 2e-6 2.6e-6 2e-6 3.6e-6 4.6e-6 2.22e-5 4.48e-5 1.08e-4

ftw 4 3e-6 2e-6 3e-6 4.2e-6 7.6e-6 2.5e-5 6.08e-5 1.31e-4 2.41e-4

ftw 8 3.6e-6 4.2e-6 5.2e-6 8e-6 2.84e-5 6.72e-5 1.39e-4 4.27e-4 8.51e-4

ftw 16 1.24e-5 1.58e-5 2.14e-5 4.14e-5 8.3e-5 1.69e-4 4.71e-4 9.65e-4 1.93e-3

ftw 32 3.4e-5 3.94e-5 6.32e-5 1.14e-4 2.11e-4 5.27e-4 1.14e-3 2.11e-3 4.38e-3

ftw 64 9.24e-5 1.26e-4 2.17e-4 3.71e-4 7.54e-4 1.46e-3 2.77e-3 7.07e-3 1.34e-2

Table 6.5: The Runtime of dimensionless twiddle codelet in seconds

iterations 2 4 8 16 32 64 128 256 512

ftw 2 2.2e-6 1.8e-6 2.4e-6 3e-6 3.6e-6 5.8e-6 2.42e-5 7.78e-5 1.23e-4

ftw 4 2.6e-6 3e-6 3.6e-6 5e-6 7.4e-6 2.52e-5 7.44e-5 1.55e-4 2.87e-4

ftw 8 3.6e-6 4.2e-6 6.2e-6 9.8e-6 2.98e-5 8.68e-5 1.67e-4 6e-4 1.3e-3

ftw 16 1.4e-5 1.5e-5 2e-5 4.54e-5 1.05e-4 2e-4 6.9e-4 1.47e-3 3e-3

ftw 32 3.38e-5 3.9e-5 7.08e-5 1.32e-4 2.49e-4 7.54e-4 1.57e-3 3.2e-3 6.6e-3

ftw 64 1.05e-4 1.54e-4 2.59e-4 4.93e-4 1.13e-3 2.18e-3 4.53e-3 1e-2 1.96e-2

where D is a generalized twiddle matrix. Table 6.4 and 6.5 show the performance

of FFTW’s twiddle codelets and the corresponding one-dimensional twiddle codelets

used in the dimensionless FFT for different value of s. The twiddle codelets were

timed under bigger iterations because there is no upper bound for s when calling the

twiddle codelet. The comparison is given in Figure 6.5.

Both Figures 6.4 and 6.5 show that the one-dimensional codelets generated by

SPIRAL are slower than FFTW’s codelets in most cases. This explains the slowdown

for the one-dimensional DFT when computed using the dimensionless FFT. Although

SPIRAL generates code competitive to FFTW, the post-processing mentioned in

Section 5.2.3 slows down the performance.
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Figure 6.4: The ratio of the runtime of the dimensionless no-twiddle codelets to

FFTW’s no-twiddle codelets
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6.3.2 A Performance Model

This section gives a simple model to estimate the overall performance from a given

plan and the performance of the codelets.

In FFTW, when a given plan factorizes N = RS, the executor will first make R

recursive calls or call a no-twiddle codelet R times to compute the DFT of size S.

It then calls S times a twiddle codelet of size R to compute FR s times. Let T (N)

denote the time to compute a DFT of size N , fnS,R denote the runtime of a no-

twiddle codelet to compute (IR ⊗ FS)LN
R , and ftwR,S denote the time for a twiddle

codelet to compute (FR ⊗ IS)T N
S . The runtime can be estimated by the following

recurrence when N = RS

T (N) =











RT (S) + ftwR,S ,

fnS,R + ftwR,S, in the base case
(6.1)

Figure 6.6 shows a plan returned by FFTW to compute a one-dimensional DFT

of size 220. According to Equation 6.1, the runtime is estimated as

T (220) = 22T (218) + ftw22,218

= 22(25T (213) + ftw25,213) + ftw22,218

= 27T (213) + 22ftw25,213 + ftw22,218

...

= ftw4,218 + 4 × ftw32,213 + 27 × ftw4,211

29 × ftw4,29 + 211 × ftw16,32 + 211 × fn32,16. (6.2)

Equation 6.2 also can be used to estimate the runtime for the dimensionless FFT

by substituting the runtime for the dimensionless codelets. Most of the runtimes

that are needed to estimate the performance are given in Tables 6.2, 6.4, 6.3 and 6.5.

Additional experiments were made to determine the other runtimes that are needed.
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Figure 6.6: A FFTW plan of input size 220

Using Equation 6.2,

TFFTW = 0.382976 + 0.931264 = 1.31424 seconds,

Tdimless = 0.43008 + 1.198184 = 1.628264 seconds,

and

Rets =
Tdimless

TFFTW

= 1.2389.

Although the estimated runtimes differ from the experimental results, the runtime

ratio is relatively close to the experimental result. This shows how the performance

of codelets affects the overall performance.
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Chapter 7: Conclusion

This thesis presented a divide and conquer algorithm for computing multi-dimensional

DFTs that works independent of the dimensions. The benefit is that the decompo-

sition is not constrained by the number of points in each dimension as is the case

for the standard row-column algorithm. The dimensionless FFT was implemented by

modifying the FFTW package for computing one-dimensional FFTs (only minor mod-

ifications were required). The resulting program improved the performance of some

multi-dimensional DFTs as compared to FFTW’s row-column algorithm. While the

performance gain was not as great as expected, it was shown that additional perfor-

mance gain is possible through the use of better multi-dimensional codelets.
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