
Pattern Recognition Techniques to Infer

Driver Intentions

Hiren Mansukhlal Mandalia, CS, Drexel University

Technical Report DU-CS-04-08
Department of Computer Science

Drexel University
Philadelphia, PA 19104

December 2004

1

Pattern Recognition Techniques to Infer Driver Intentions

A Thesis

Submitted to the Faculty

of

Drexel University

by

Hiren Mansukhlal Mandalia

in partial fulfillment of the

requirements for the degree

of

Master of Science in Computer Science

December 2004

 ii

Acknowledgements

I take this opportunity to thank Dr. Salvucci, Dr. Shokoufandeh and Dr. Lee for their

support and guidance throughout the writing of this thesis. I would also like to thank

Nobuyuki Kuge and Tomohiro Yamamura at Nissan Motor Co., Ltd., Japan for collecting

the driving data. I’m also grateful to my family, friends and colleagues who have been a

constant source of inspiration to me throughout this study.

 iii

Table of Contents

List of Tables ... vi

List of Figures... vii

ABSTRACT... ix

1. Introduction... 1

1.1 Recent Work ... 2

1.2 Proposed Approach... 4

1.2.1 Defining a Lane Change .. 5

1.2.2 Continuous vs. Discrete Recognition... 6

1.2.3 Data Collection .. 7

2. Support Vector Machine Recognition .. 9

2.1 Brief description of Support Vector Machines ... 9

2.2 Motivation for SVM ... 11

2.3 Kernel Selection and Data Representations.. 12

2.4 Training Support Vector Machines for LC/LK .. 13

2.4.1 Choosing a Window of Time... 13

2.4.2 Choosing a Data Representation.. 16

2.4.3 Choosing a Feature-set... 19

2.4.4 Generating Continuous Recognition.. 20

2.5 Results... 20

2.6 Software Package for SVM .. 23

3. Hidden Markov Model Recognition ... 24

3.1 Brief Introduction to HMM .. 25

 iv

3.2 Motivation... 26

3.3 Developing HMM-based Recognition System ... 26

3.3.1 Choosing the HMM Structure.. 26

3.3.2 Analogy from Speech Recognition.. 27

3.3.3 Training HMM for LC and LK.. 28

3.3.4 Choosing the Feature Set ... 30

3.4 Recognition ... 31

3.5 Results... 32

3.6 HTK - Development tool .. 34

4. Results and Comparative Study.. 35

4.1 ROC curves... 36

4.2 Time Elapsed .. 37

4.3 Lateral Movement... 38

5. Graph theory based Lane Change Detection .. 42

5.1 Introduction... 42

5.2 Overview of the Technique... 43

5.2.1 From Continuous Stream of Data to Correlation Matrices.............................. 43

5.2.2 From Correlation Matrices to Graphs .. 44

5.2.3 Construction of the Database ... 45

5.2.4 Simple Graph-Matching Algorithm... 47

5.3 Results... 50

6. General Discussion ... 52

List of References ... 55

 v

APPENDIX A... 58

 vi

List of Tables

Table 1: SVM Feature Set... 22

Table 2: Percentage Detected at 1 and 5 % False Positives (non-Overlapping)............. 22

Table 3: Percentage Detected at 1 and 5 % False Positives (Overlapping) 22

Table 4: Final Results with Different Kernels .. 23

Table 5: Word Dictionary and Structures ... 28

Table 6: HMM Feature Set ... 33

Table 7: Percentage Detected at 1 and 5 % False Positives (HMM Structure I) 33

Table 8: Percentage Detected at 1 and 5 % False Positives (HMM Structure II)........... 33

Table 9: Results with Graph Technique.. 51

Table 10: Complete Feature Set.. 58

 vii

List of Figures

Figure 1: Example to Show Different Driver Actions .. 1

Figure 2: Lane Change Definition .. 5

Figure 3: Discrete vs. Continuous Recognition .. 6

Figure 4: Screen Dump of the R2 Video .. 8

Figure 5: Points Separated by Hyperplane.. 10

Figure 6: Steering Angle Displays a Sine-wave like Pattern.. 14

Figure 7: Moving Window of Constant Size .. 15

Figure 8: Data Representation .. 18

Figure 9: A Left-Right HMM ... 27

Figure 10: Configuration of ‘LCL’ Word (using Structure II) ... 29

Figure 11: Training Windows for LC/LK... 29

Figure 12: Input Test Sentence ... 31

Figure 13: Mind-Tracker Overview.. 35

Figure 14: ROC Curves for the 3 Frameworks... 36

Figure 15: Time Elapsed Chart ... 37

Figure 16: Lateral Movement Chart ... 39

Figure 17: ROC Comparison Chart .. 40

Figure 18: Time Elapsed Chart ... 41

Figure 19: Lateral Movement Chart ... 41

Figure 20: Continuous Stream to Matrices ... 44

Figure 21: Matrix to Graphs ... 45

Figure 22: Construction of Database .. 47

 viii

Figure 23: Matching and Data Mining Strategies... 48

Figure 24: Degree of Matching... 49

 ix

ABSTRACT
Pattern Recognition Techniques to Infer Driver Intentions

Hiren M. Mandalia
Dr. Dario Salvucci, Ph.D.

Driving is a complex task that requires constant attention from the mind and the body.

Automobile drivers today are under high risks, thanks to the ever-expanding telematics

industry, cell-phone driving and other distractions. Inferring driver intentions, especially

critical ones like changing lanes, is therefore necessary for any intelligent driver support

system. This thesis explores different methods to infer driver's intention to change lanes.

Experimental data were collected that observed driver's behavior (e.g. speed, steer angle,

gas pedal pressure) and environmental data around the driver (e.g. distance of the car in

front). With the hypothesis that such data would display significantly different patterns

during a lane change versus lane keeping, this problem was formulated as a pattern

recognition problem. Two different techniques were studied in detail to solve this

problem, namely support vector machines (SVMs) and hidden markov models (HMMs).

These two machine learning techniques showed promising results. SVMs have been

particularly effective in early detection of lane changes with a very high sample-by-

sample prediction rate. In addition, this thesis compares these techniques with a new

“mind tracking” approach [9, 10] and also proposes a new graph-based approach to detect

lane changes.

1

1. Introduction

Driving is a complex skill and is getting increasingly complex with the growing

popularity of in-car electronics, navigational devices, cell phones and other telematics

devices. With this complexity comes the increased risk of driving. Automobile

manufacturers have continually sought to devise innovative driver support systems that

can reduce such risks and make the driving experience more pleasurable. Such support

systems provide various kinds of help to the driver while driving and especially during

critical maneuvers such as changing lanes, sharp turns, etc. However, for any such system

to be effective - i.e. offer the right kind of help at the right time - it is imperative that we

know what the driver is doing or trying to do.

One can argue as to what is the real necessity to infer driver intentions. The most

critical reason is safety. Let us look at an example to demonstrate this. Figure 1 shows a

driver in a black vehicle rapidly approaching a slow-moving vehicle in the front. At this

point the driver has two options as shown in the figure.

(1) To accelerate and steer into the other lane

(2) To slow down and stay in the same lane

2

11

22

11

2

Figure 1: Example to Show Different Driver Actions

2

If the driver now decides to accelerate and steer into the other lane but the support

system thinks that the driver is going straight and helps to slow down, an accident could

be unavoidable. Let us say on the other hand, if the driver decides to stay in the lane but

the system thinks otherwise and helps to steer – again, an accident might occur. Such

disasters can be avoided only if the support system can accurately infer the driver’s

intention. Thus for any intelligent driver support system it is very essential to know the

expected behavior of the driver. The earlier these intentions are inferred, the more safely

the driver can utilize the support system.

One of the most common and critical tasks during driving is changing lanes,

therefore it becomes imperative that driver support systems predict drivers’ intentions to

change lanes accurately. This thesis explores the problem of inferring driver intentions

from a pattern recognition perspective. It presents a background of related work in this

field and then discusses in detail two pattern recognition frameworks investigated to

achieve real-world solutions.

1.1 Recent Work

Vast attention has been given to the driving task in general but much less attention

has been directed to lane changing, despite its ubiquity in common driving environments

— such as highway driving, which accounts for roughly 70% of vehicle miles on

American roadways [23]. Existing work on lane-changing behavior in large part

emphasizes the decision-making aspects of the task, particularly gap acceptance and the

decision of when to change lanes [24, 25]. Other studies have addressed different aspects

3

of lane changing, from behavioral aspects such as typical durations [26] to practical

development of lane-change collision warning systems [27]. Very little work has been

done on recognizing driving maneuvers, especially critical ones like lane changing.

Some recent endeavors in this direction include work from Pentland and Liu

(1999), Kuge et al. (2000), and Salvucci and Siedlecki (2003). The first two approaches

were based on the concept that human behavior is made up of a sequence of internal

‘mental’ states that was not directly observable. These approaches used a technique

called hidden markov models (used in Speech Recognition) that are probabilistic models

powered by robust expectation-maximization methods. Pentland and Liu reported that

their recognition system could predict changes in the first 0.5 second of the maneuver.

However their recognizer offers only discrete recognition as opposed to continuous

recognition (as reported in this thesis). Second, Kuge et al. reported results with a

continuous recognition system; however, their system only uses steering-based features

and has no knowledge of the surrounding environment, which clearly affects whether and

when people make lane changes. This thesis also proposes a hidden markov model based

recognition system but uses a wide range of features including environmental features

like lane position.

Salvucci and Siedlecki proposed a mind tracking approach [9, 10] that uses a

cognitive architecture called ACT-R to model driver’s behavior. The mind tracking

system essentially isolates a temporal window of driver data and extracts its similarity to

several virtual drivers that are created probabilistically using a cognitive model. However

4

it does not utilize the fact that the measurable components indicative of the driver state

may often reside in some high dimensional feature space and data can be easily classified

by finding a linear separating hyperplane. This thesis reports the use of Support Vector

Machines that address this issue optimally.

1.2 Proposed Approach

This thesis concentrates on detecting lane change intentions using two separate

machine learning frameworks, Support Vector Machines (SVMs) and Hidden Markov

models (HMMs). Each framework has been employed independently to infer driver

behavior. The data used for the experiments were collected from real instrumented

vehicle that recorded different behaviors of the driver. The data are highly multimodal in

nature. Correct implementation of each framework requires thorough understanding of

the driver’s behavior (lane changing vs. lane keeping). Each feature was examined

closely to infer any specific patterns or trends displayed particularly during the time

course of a lane change. Studies about patterns during a lane change [15] have revealed

that drivers exhibit specific patterns for steering, acceleration and eye gazes. Careful

investigations revealed that many features in addition to those mentioned above also

contributed significantly to exhibit distinct trends. These observations clearly suggested

that the driving data vary significantly during a lane change against normal driving (lane

keeping). This served as the prime motivation to use pattern recognition techniques to

recognize specific behaviors. Currently these techniques are used specifically for

detecting lane changes, but they can be applied to a fuller range of driver intentions such

as left and right turns, stops, parking, etc.

5

1.2.1 Defining a Lane Change

To detect a lane change (LC) it is critical we define it clearly. Precisely what time

window within an entire lane change instance should be marked as lane change? Often

drivers make initial unsuccessful attempts to cross over to the other lane. There are many

subjective choices for the definition of a lane change. However the definition of lane

change used in [9] was found to be most reasonable. Accordingly, a lane change starts

when the vehicle moves towards the other lane boundary and never returns i.e. the final

shift of the driver towards the other lane. Any reversal cancels the lane change. The lane

change ends when the vehicle crosses the lane boundary.

We also assume that the lateral movement of the automobile towards the other

lane should be greater than or equal to 3.5 m/s, meaning that the LC can take at most 10

seconds. (Note that average width of the road is approximately 3.5 m.)

Figure 2: Lane Change Definition

Figure 2 shows the path followed by a driver during a typical lane change. Note

that before making the final attempt to steer into the next lane, the driver made a few

start

end

6

unsuccessful attempts, which are ignored in the final definition. The time window defined

by start and end marks the definition of lane change.

1.2.2 Continuous vs. Discrete Recognition

There are essentially two ways of framing the problem of lane change

recognition: continuous (real-time) or discrete recognition. Discrete recognition

essentially means recognizing driver intention after every discrete segment of time or

when an event occurs. An event in this case would be a lane change (LC) or lane keeping

(LK). Continuous recognition on the other hand produces recognition results continually.

Driving data is a continuous stream of samples where each sample is a vector of feature

values. Thus a continuous recognition will generate recognition output at every sample.

Essentially, in discrete recognition entire block of samples is classified together. Figure 3

below diagrammatically describes this difference.

LK LK LC LC LC LC LK

LC LC

a. Discrete Recognition

b. Continuous Recognition

LK LK LC LC LC LC LK

LC LC

a. Discrete Recognition

b. Continuous Recognition
Figure 3: Discrete vs. Continuous Recognition

7

For an intelligent driver support system it is required that a continuous recognition

output is generated. With the definition of lane change and continuous recognition, the

problem domain is clearer. For a continuous pattern recognition system, every sample in

the lane change window must be recognized as a lane change and others as lane keeping.

1.2.3 Data Collection

The data sets used for the experiments in this thesis were collected using a real

instrumented vehicle at the Nissan Motor Company in Oppama, Japan. Four driver

subjects were asked to drive on a Japanese multi-lane highway environment for one hour

each. The drivers spent approximately one hour driving through smooth and dense traffic

conditions. This provides us with a good representation of lane changes of different time

lengths. The drivers were given no specific goals or instructions and they were allowed to

drive on their own. Electronic sensors from the car captured values for driver actions like

gas pedal pressure, steering angle, speed etc. Using digital cameras and advanced vision

algorithms, environmental features around the driver were recorded. Some of these

include distance of the lead car, lane position etc. Three additional cameras were installed

inside the car that captured video images of (i) the driver (side profile), (ii) gas pedal and

brakes movements, and (iii) front view (as viewed by the driver). However data from

these video images were used only for initial analysis. Figure 4 below shows a screen

dump of a video combining streams from different cameras. In each of the two machine

learning frameworks discussed in the following sections 2/3rd of the data was used for

training and the remaining 1/3rd was used for testing. A complete list of all the features

with their brief explanation is provided in Table 10 in the Appendix A. The data was

collected at a sampling rate of 10 Hz.

8

Figure 4: Screen Dump of the R2 Video

9

2. Support Vector Machine Recognition

This section discusses the use of Support Vector Machines (SVMs) towards

continuous lane change detection. Support Vector Machines are learning machines that

can perform binary classification (pattern recognition) and real valued function

approximation (regression estimation) tasks. SVMs have been widely used for isolated

handwritten digit recognition [1, 2], object recognition [3], speaker identification [4], and

face detection in images [5] and text categorization [6]. The chapter reviews the basic

functioning of SVMs, motivation for using SVMs for lane change detection, training and

recognition of Lane Changes. The results, in terms of the prediction accuracy (true

positive rates and false positive rates) and other measures are discussed in the concluding

section.

2.1 Brief description of Support Vector Machines

‘Support vector machines’ (SVM) are based on statistical learning theory that

uses supervised learning [16]. In supervised learning, a machine is trained instead of

programmed, to perform a given task on a number of input-output pairs. According to

this paradigm, training means choosing a function which best describes the relation

between the inputs and the outputs. The central question of statistical learning theory is

how well the chosen function generalizes, or how well it estimates the output for

previously unseen inputs.

10

In general, any learning problem in statistical learning theory will lead to a solution of the

type

where the xi, i = 1,…, l are the input examples, K a certain symmetric positive definite

function named kernel, and ci a set of parameters to be determined from the examples.

For details on the functioning of SVM readers are encouraged to refer to [1].

In short, the working of SVM can be described as statistical learning machines

that map points of different categories from n-dimensional space into a higher

dimensional space where the two categories are more separable. It tries to find an optimal

hyperplane in that high dimensional space that best separates the two categories of points.

(Source: http://www.support-vector.net)

Figure 5: Points Separated by Hyperplane

11

Essentially, the hyperplane is learned by the points that are located closest to the

hyperplane which are called support vectors. There can be more than one support vector

on each side of the plane. Figure 5 shows an example of two categories of points

separated by a hyperplane.

2.2 Motivation for SVM

Assessing driver state is a substantial task, complicated by the various nuances

and idiosyncrasies that characterize human behavior. Measurable components indicative

of driver state may often reside in some high dimensional feature space [7]. Researchers

have found that SVM have been particularly useful for binary classification problems.

SVMs offer a robust and efficient classification approach for the problem of lane change

detection because they map the driving data to high dimensional feature spaces where

linear separating hyperplanes are sufficient to separate to two categories of data points. A

correct choice of kernel and data representation can lead to good solutions. The problem

of choosing the correct kernel is not trivial. For the purpose of this work, different types

of kernels were employed to compare their performances at the classification task.

However more sophisticated techniques now exist to allow systematic kernel estimation

[18]. The benefits of SVMs over using HMM based methods are described later when the

HMM framework is explained in detail.

12

2.3 Kernel Selection and Data Representations

A key issue in using the learning techniques is the choice of the kernel K in Eq

(1). The kernel K(xi, xj) defines a dot product between projections of the two inputs xi and

xj, in the feature space (the features been {φ1(x), φ2(x),…, φN(x} with N the

dimensionality of the RKHS). Therefore the choice is closely related to the choice of the

“effective” representation of the data, e.g. the image representation in a vision

application. The problem of choosing the kernel for the SVM, and more generally the

issue of finding appropriate data representations for learning, is an important one [16].

The theory does not provide a general method for finding “good” data representations,

but suggests representations that lead to simple solutions. Although there is not a general

solution to this problem, recent experimental and theoretical work provides insights for

specific applications [16, 19, 20, 21]. However recent work from researchers [18] has

shown that for a given data representation there is a systematic method for kernel

estimation using semi-definite programming. Estimating the right kind of kernel remains

an important segment of the future work with this kind of work. Once the right kind of

kernel that best learns the available data is known the classification can be more accurate.

At this point of time the available data was tested against different types of kernel

functions to know the performance of each of them experimentally. Some of the kernel-

types tested were linear, polynomial, exponential and gaussian. However, it was observed

that all the kernels performed as good as or worse than linear kernel, as will be reported

in the results. All the final results with SVM classification are therefore analyzed with

linear kernel.

13

2.4 Training Support Vector Machines for LC/LK

The following few sections describe the issues with using support vectors

machines for lane change detection and the solutions that were suggested.

2.4.1 Choosing a Window of Time

One issue with using SVM for lane change detection was that lane changes do not

have fixed time length. Lane changes vary anywhere between 1 to 5 seconds. Direct

temporal mapping between the data and SVM classification is not possible. Longer lane

changes see a smooth transition in features values like steering angle, lane position,

acceleration, etc. whereas shorter ones have a relatively abrupt transition.

Driving data is highly temporal in nature - that is the feature values change as a

function of time. Moreover, one feature may be a function of one or many other features.

The exact inter-dependency between features or within features themselves is not clear.

In the domain of detecting driving maneuvers like lane changes, the change in the

features with respect to time and their inter-dependency is more critical than the

individual values of the features. For example, studies have shown that during a lane

change drivers exhibit an expected sine-wave steering pattern except for a longer and

flatter second peak as they straightened the vehicle [15]. The figure below shows such a

pattern of steering against time.

14

Figure 6: Steering Angle Displays a Sine-wave like Pattern (Source: Salvucci & Liu,’02)

Drivers first steer toward the destination and then back to center to level the vehicle on a

steady path to the destination lane. Then, in a continual smooth movement, drivers steer

in the other direction and back to center to straighten the vehicle in the destination lane.

Such patterns can only be observed (by humans) or learned (by machines) when a

reasonable sized window of samples is observed. Thus for all practical purposes when

training the SVM for a lane change or lane keeping an entire window is input instead of

discrete samples.

To pick up training samples, the entire stream of training data is broken down into

fixed size smaller windows. Each window corresponds to a training example. The

windows can also overlap with each other. The size (time length) of the window that

adequately captures the patterns within the features is a free parameter and therefore left

to experimentation. Various window sizes were analyzed between 1 second to 5 seconds.

The results with different window sizes are reported at the end of this chapter. A window

size of 1.2 seconds (~12 samples) works well to train SVM.

15

Another key issue in modularizing the data stream into smaller windows is how to

label each window. Using the definition of lane change (explained in section# 1.2.1),

each sample on the training data can be labeled positive (LC) or negative (LK). However,

a single training example consists of multiple samples, each sample with its own label.

The last sample in a window offers the latest information which is also used to

label the entire window. Thus if the last sample in a window of size N samples is positive

(LC), the entire window is marked positive and vice versa. But most importantly, we are

most interested in the last sample as the most recent one. One must remember that to

predict a classification label for any sample only the preceding samples can be used. Thus

the last sample is the best indication of what the driver is currently trying to do.

t1 t3 t4 tnt2

t0 t2 t3 tn-1t1
LC/LK

t0
LC/LK

tn-1t1 t3 t4 tnt2

t0 t2 t3 tn-1t1
LC/LK

t0
LC/LK

tn-1

Figure 7: Moving Window of Constant Size

As shown in Figure 7 a single window of size N is defined by N samples at times

{t0, t1,…, tN-1}. The label of sample at tN-1 is used to classify the entire window. A

moving window is used as shown in the figure. Whenever a new sample is obtained, it is

added to the moving window and the last sample is dropped thus maintaining a constant

size window.

16

2.4.2 Choosing a Data Representation

As argued earlier, the problem of data representation is an open one. However,

good solutions with SVM depend significantly on the representation and kernel selection.

A simple approach to data representation is to input the entire training window to the

SVM with the actual values of the features [7].

In such an approach, a single window of size N samples is defined as

[steer_angle(t0),…,steer_angle(tN-1), speed(t0),…,speed(tN-1),…]

in general is equivalent to

[F1(t0),…,F1(tN-1), F2(t0),…,F2(tN-1),…,FM(t0),…,FM(tN-1)]

where Fx(ti) represents the value of feature Fx at time ti. Such a vector was used to train

Relevance Vector Machines (RVM). RVM is a probabilistic sparse kernel model

identical in functional form to the SVM [8]. Embedded in this formulation is the fact that

temporal variations in maneuver execution are handled implicitly by RVMs. However,

inherent functionalities of RVMs would fail to observe any dependencies or relationship

between steer_angle(t0), steer_angle(t1), steer_angle(t2) and so on which could be critical.

Also this formulation results in abnormally long sized input vector leading to additional

computational complexity.

An alternative approach is suggested to explicitly include some form of

dependency/relationship measure between feature values rather than the original values.

17

As argued previously it is the change pattern in the feature values which is more critical

than the values themselves. Variance of a feature over all the samples in the block was

used to replace the original values of that feature.

Variance of a feature is given by

where N is the window size (number of samples), µx is the mean of the feature x within

the window and xi is the feature value of the ith sample. Thus variance effectively captures

the change in the feature values which is very critical to learn specific patterns. Variance

of features is particularly useful in reducing the side effects of any noisy data to a good

extent. Another reason that encouraged the use of variance is the reduced feature set that

was used for final training which is explained in the following section.

Figure 8 explains the two data representations that were experimented using

variance. A single window of size N is shown on the left hand side of the two

representations where each feature Fx has N values. In Data Representation I (non-

overlapping), a single window is divided into two equal halves and the variance of

features from each half is used. Thus for every N values of a feature we obtain two values

of variances from the first and second half of the window. The rationale for splitting a

single window in two halves was the need to capture multiple change patterns within a

window. For example, features like lane position or steer angle might change multiple

times within a window but a single variance across the window will reflect only the

18

overall change. This observation resulted in several modifications that helped capture

changes in the feature values at multiple levels.

Data Representation II (overlapping) shown in the figure uses a similar structure

with the difference that the two halves over lap with each other. A window of size N is

divided into three equal parts say a, b, c. The first half will consist of the first two parts

(a, b) and the second half will consist of last two parts (b, c) so that part b is common to

both.

Figure 8: Data Representation

Overlapping structure was tested to account for the fact that the division of a lane

change may not be equal and the changes may not happen always near the two ends of

19

the window. Experiments were performed with each representation and the results are

listed at the end of this chapter.

2.4.3 Choosing a Feature-set

While training the SVMs it very important that only the most effective set of

features is used. Features that display significant differences during a lane change against

normal driving are the critical ones. Features that do not show enough predictability and

vary randomly irrespective of a lane change should be avoided as they degrade the

discrimination power of SVM.

With no prior preference to any feature, initial experiments included all features.

Later, only selected combinations were employed to choose the minimal feature set that

would produce the best classification. Various combinations of features were tested.

However, only few selected combinations generated good results. Results with these

selected combinations are presented later in this chapter. Best classification results were

obtained with only four features with lane positions at different distances. Such an

outcome was expected since lane position demonstrated the most consistent pattern

among all the other features. One can argue that steering angle should also be a strong

candidate. However, steering angle displays similar patterns both during lane change and

while driving through a curved road which led to high number of false positives.

20

The current method of feature selection is based purely on experiments. However,

as a future study use of more systematic stochastic techniques like t-tests, recursive

feature elimination, and maximum likelihood test are planned.

2.4.4 Generating Continuous Recognition

An effective solution to simulate continuous recognition using discrete

recognition is suggested. Classification label obtained for a single block (t0 – tN) would

essentially mean that all the samples within that block can be classified under that label.

More importantly it suggests the classification label of the last sample (tN) in the block

since all the previous samples (t0 – tN-1) serve as history data for it. To simulate a

continuous recognition scheme we use a moving window of size N (block-size) by one

sample at a time across the data to obtain classification labels for each sample. The

concept of moving window is the same as one used while training. Consistency among

classification scores is one important advantage of this scheme. That is if the previous

and next few samples are classified positive the probability of the current sample to be

classified negative is very low.

2.5 Results

 While training the SVMs the most important factors that affected the results were

(1) Data representation, (2) Window Size, and (3) Feature Set. Experiments were

conducted with different configurations of each of these factors to obtain the best

recognition system. Table 1 lists the different combinations of feature sets used. Table 2

and Table 3 show the recognition results using data representations I and II respectively

21

for different window sizes. The results denote the percentage of true positives detected in

a ROC curve [28] at 1% and 5% false positive ratios. It is clear from the table that the

recognition system is very robust and that almost all combinations produce good results

through the two tables. The combinations that generated best results at 5% and 1% false

positives are marked separately with red and green boxes respectively. Please note that

although 5% false positives is our point of interest, it is interesting to note results at 1%

also. Table 4 shows results with four different kernels using the best configuration

obtained with. From the results it is evident that none of the kernels perform better than

linear kernel at 5% false positives. Exponential kernel generates the best recognition at

1% false positives. For all final comparisons linear kernel is used since it generates the

best result at 5% false positives. Further discussion of the results can be found in Chapter

4 where the three frameworks are compared together.

22

Table 1: SVM Feature Set

 Features
Set 1 Acceleration, Lane position 0, Lane position 30, Heading
Set 2 Acceleration, Lane position 0, Lane position 30, Heading, Lead Car distance
Set 3 Acceleration, Lane position 0, Lane Position 20, Lane position 30, Heading,

Longitudinal acceleration, Lateral acceleration
Set 4 Acceleration, Lane position 0, Lane position 30, Heading, Steering Angle
Set 5 Lane position 0, Lane position 10, Lane position 20, Lane position 30

Table 2: Percentage Detected at 1 and 5 % False Positives (non-Overlapping)

 Set 1 Set 2 Set 3 Set 4 Set 5

Win Size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP

5 sec 50.17 83.53 50.28 90.03 50.29 91.16 50.12 89.96 54.87 91.13
4 sec 37.37 88.10 36.73 91.30 41.62 92.50 38.99 91.50 48.92 92.20
2 sec 50.13 89.30 50.33 93.00 53.30 97.70 44.71 94.00 55.22 97.40
1.5 sec 38.75 85.20 38.66 93.70 45.03 96.30 31.71 93.20 53.30 97.70
1.2 sec 59.46 96.83 59.51 96.00 58.90 96.00 58.42 96.05 67.48 96.70

0.8 sec 37.89 86.28 29.01 91.83 46.20 90.00 38.23 86.62 56.79 94.57

Table 3: Percentage Detected at 1 and 5 % False Positives (Overlapping)

 Set 1 Set 2 Set 3 Set 4 Set 5

Win Size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP

5 sec 47.85 87.1 47.95 86.93 48.89 89.00 49.23 88.07 49.58 87.77
4 sec 47.82 89.92 47.91 90.70 49.06 91.50 47.02 89.50 54.05 91.06
2 sec 56.26 96.20 54.60 96.16 58.12 97.90 49.20 95.79 61.20 97.32
1.5 sec 50.13 94.52 49.77 94.56 53.30 97.56 43.75 93.28 55.22 97.50

1.2 sec 39.25 93.79 38.77 93.70 45.03 95.00 31.71 93.20 53.07 97.94

0.8 sec 58.99 97.00 59.69 95.50 58.90 96.00 57.82 96.42 67.48 96.70

23

Table 4: Final Results with Different Kernels

 Linear Polynomial Exponential Gaussian

@1% @5% @1% @5% @1% @5% @1% @5% 1.2s, Set 5,
Overlapping

53.07 97.94 58.12 97.94 69.40 97.17 51.08 97.40

2.6 Software Package for SVM

The WinSVM software available at www.kernel-machines.org was used for the

purpose of my experiments with SVMs. It is windows version called the ‘SVM–light’

(http://svmlight.joachims.org/). The software offers an easy interface to use SVMs on a

Windows platform. It also allows use of different kernel functions including a user

defined kernel function. Further details on the software application package and the

details on how to use it are described in detail in the Appendix.

24

3. Hidden Markov Model Recognition

Previous studies have shown that human behavior can be observed as a sequence

of internal ‘mental’ states each with its own particular behavior and transition

probabilities [22]. In case of driving, driver maneuvers like lane changing, turns, driving

through a curved road etc can be seen as a sequence of internal mental states. For

example a lane change can consists of following steps (1) a preparatory action centering

the car in the current lane, (2) looking around to make sure the adjacent lane is clear, (3)

steering to initiate the lane change, (4) the change itself, (5) steering to terminate the lane

change, (6) a final re-centering of the car in the new lane. However, it is also observed

that the internal states within the human mind are not directly observable and thus they

must be determined by using some indirect estimation process. Hidden Markov model

(HMM) is a superior method for recognizing temporal data patterns that can be expressed

as stochastic transitions among finite discrete states.

This section reviews the second machine learning technique for detecting driver

intentions. Hidden Markov Models (HMMs) have received burgeoning attention in the

past few decades as a rich tool for modeling real-world signals. Its chief application is in

machine recognition of speech.

25

3.1 Brief Introduction to HMM

Hidden Markov models represent an extension of simple, or observable, Markov

models. A simple Markov model has three components: a set of states, an observation

(i.e., physical event) associated with each state, and a set of transition probabilities

between states. The model represents “fully observable” Markov processes in that there is

a direct and obvious mapping between observations and states. HMMs extend Markov

models by allowing each state to produce different observations according to

probabilistic distributions. HMMs thus represent “hidden” Markov processes in that there

may be numerous mappings between observations and states – that is, the state sequence

is “hidden” from observation.

The basic three problems of the HMMs are as follows

1. Evaluation: Given a model and a sequence of observations, compute the probability

that the observed sequence was produced by the model.

2. Decoding: Given the sequence of observations and model, determine the hidden

sequence of states that is optimal in some meaningful sense.

3. Estimation: Given the sequence of observations and a model, adjust the model

parameters so that the probability of current observation sequence given the model is the

maximum.

Formal mathematical solution exists for each of these problems for HMMs,

details of which can be obtained in [11]. Previous studies have found that driver behavior

can be characterized as sequence of basic actions each associated with a particular state

26

of the driver-vehicle-environment [22]. Given sufficient training sequences, ‘estimation’

can be used to train model parameters adequately. Trained models can then use

‘decoding’ to determine the hidden sequence of states that corresponds to a particular

driver behavior.

3.2 Motivation

There are two main motivations to use hidden markov models for the task at hand.

First, HMM support recognition of temporal data patterns. This is particularly useful

because humans perform different actions on a variable time-scale. Even within a lane

change the internal states may vary in time. HMM provide an excellent framework for

such temporal mappings. Second, human actions can be observed as some sequence of

internal ‘mental’ states. However, this sequence is hidden. HMM can be trained to

recognize this hidden sequence of states.

3.3 Developing HMM-based Recognition System

3.3.1 Choosing the HMM Structure

One of the issues in training HMM is selecting the right kind of HMM. Studies

have shown that driving maneuvers like lane change often consists of a definite sequence

of states. The time length for each internal state is unknown. This has encouraged the use

of Left-right HMMs in previous studies [14, 22]. For consistency with previous work a

similar structure was used in this work. Figure 9 below shows a left-right HMM. In such

an HMM type, the model either can stay in a particular state or transition to the next state

in the forward direction. The model can not skip states or transition to any state in the

backward direction.

27

S1 S2 S3
P12 P23

P11 P22 P33

S1 S2 S3
P12 P23

P11 P22 P33

Figure 9: A Left-Right HMM

The data used for experimentation is the same that was used for training the support

vector machines. The definition of lane change as explained under Section 1.2.1 was used

for HMM system.

3.3.2 Analogy from Speech Recognition

The task of driving is seen analogous to speech. Different actions within the task

of driving correspond to different words used in speech. The particular actions we are

interested include (1) lane change and (2) lane keeping. In the domain of speech

recognition words are considered as consisting of a sequence of sub-words or phonemes.

For example the word ‘cream’ can be observed as a sequence of following phonemes,

‘cream’ k - r - iy - m

28

 Lane change or lane keeping as already studied is a sequence of internal mental states.

This analogy works well to match the temporal variations in the driving data and

sequential nature of the internal states.

3.3.3 Training HMM for LC and LK

Following the analogy with speech recognition the HMM system was constructed

to train three kinds of words. These are list in the table below.

To achieve recognition on a more continuous scale, each of the above words

(LCL, LCR, and LK) were broken down into 2 or 3 smaller sub-words or phonemes.

Each of these sub-words consists of 3 states each. Thus the recognition is performed not

at a word-level but at a sub-word level. This also requires that we have a separate HMM

for each of the sub-word instead of having a single HMM for one complete word. Figure

10 below shows the configuration corresponding to a lane change left (LCL) word with

structure I. The structure is similar for other words. Note that the use of this structure is

inspired by a similar sub-HMM structure used by Kuge et al. (2000). Experiments were

performed with both structure styles and results are presented at the end of the chapter.

 Table 5: Word Dictionary and Structures

Words Structure I (2 sub-words) Structure II (3 sub-words)

1. Lane Change Left (LCL) lcl1 – lcl2 lcl1 – lcl2 – lcl3

2. Lane Change Right(LCR) lcr1 – lcr2 lcr1 – lcr2 – lcr3

3. Lane Keep (LK) lk1 – lk2 lk1 – lk2 – lk3

29

Figure 10: Configuration of ‘LCL’ Word (using Structure II)

To train HMM for a lane change (LCL/LCR) all the positive samples from the

start of a lane to the end are input. Figure 11 below shows the window that constitutes a

lane change training example. For training the SVMs a constant block size was used for

all instances irrespective of their original sizes. However HMMs provide built-in support

for temporal variations allowing variable block sizes.

Figure 11: Training Windows for LC/LK

LCL

lcl1 lcl2 lcl3

1 2 3 1 2 3

1 2 3

‘LK’ ‘LCL’

30

Some extremely rapid and/or degenerate instances of lane change resulted in very

small size windows, smaller than the number of states in HMM. These can be referred to

as abrupt lane changes. For such cases, the LC windows were padded with immediately

preceding LK samples so that the total window size equals the number of states in the

HMM. The block size should be at least as large as number of states because the HMMs

are left-right HMMs with each state having transition to itself or the next state, thus at

least one sample is required for each state. The LK training instances are not bounded by

hard boundaries like LC instances and therefore are trained with constant block size. The

window size for LK instances is a free parameter and experiments with different LK

window sizes were performed to obtain the best value. Results with different LK window

sizes are mentioned at the end of this section.

3.3.4 Choosing the Feature Set

One of the motivations to use probabilistic state machines like HMM was to

capture temporally variant patterns in features like steering and acceleration. However it

was possible that other features might also display patterns or dependency relation with

other features. To identify the best set of features experiments were done with a set of

most important features. Different combinations were experimented to reveal the most

promising set of features. Results with different feature sets are listed in the concluding

sections of this chapter. In future, systematic statistical tests need to be done for feature

reduction.

31

3.4 Recognition

Once the sub-word HMMs are adequately trained using the training examples the

recognition is a simple. We use a moving window of 7 seconds to generate what we call

as ‘test sentence’ from our analogy to speech recognition. Figure 12 below shows the

window that corresponds to a ‘sentence’. This is a large window of samples from the data

stream. If for a given test sentence the last sample is a lane change sample the sentence is

labeled as lane change. HMM uses decoding to determine the hidden sequence of states

or words with the highest probability.

Figure 12: Input Test Sentence

The classification output for a sentence could be either a single word or a sequence

multiple words. The last word in a sequence is considered as the classification output for

the entire window.

sentence

32

For example, an output for a test sentence can be

sentence = ‘LK’ + ‘LCL’

Such an output indicates that the model detected a sequence of two actions ‘lane

keeping’ and ‘lane change left’ in that order. The last word in this sequence is important

and signifies the overall classification label for the window. If the window was a lane

change window and the last word was either ‘LCL’ or ‘LCR’, we conclude that the

driver’s intention is inferred correctly.

3.5 Results

Training experiments were conducted with different sub-word structures, sizes for

LK window and features. Table 7 and Table 8 show results with different combinations

that were tested. Table 6 lists the different combinations of features used. Set 1 consisting

of lane position values generated the best results for SVM. Set 2 consists of all lane

positions and critical lateral features (heading, lateral acceleration, steering angle). Set 3

was configured by adding longitudinal features (speed, longitudinal acceleration) to Set

1. Set 4 finally had both lateral and longitudinal features along with lane positions. The

configurations that generated the best results at 1% and 5% false positives are marked in

green and red respectively. Note that Set 2, with a 2 second window worked best for 5%

false positives while Set 4 with additional longitudinal features worked best at 1% false

positive. Further discussion of the results is in the comparative study between different

recognition frameworks.

33

Table 7: Percentage Detected at 1 and 5 % False Positives (HMM Structure I)

 Set 1 Set 2 Set 3 Set 4

LK size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP

1.5 sec 40.52 67.84 35.17 75.10 41.86 66.25 37.26 73.52

2 sec 40.43 68.25 24.64 80.20 40.69 66.83 29.66 77.53

5 sec 41.85 66.92 41.35 75.02 43.44 66.00 43.80 73.77

Table 8: Percentage Detected at 1 and 5 % False Positives (HMM Structure II)

 Set 1 Set 2 Set 3 Set 4

LK size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP

1.5 sec 47.02 63.58 43.19 72.43 47.20 62.32 47.54 70.93

2 sec 48.04 64.33 31.83 78.61 47.12 62.82 38.93 74.77

5 sec 49.02 63.83 50.31 69.51 47.95 61.24 51.96 68.84

Table 6: HMM Feature Set
 Features

Set 1 Lane position 0, Lane position 10, Lane position 20, Lane position 30
Set 2 Lane position 0, Lane position 10, Lane position 20, Lane position 30,

Heading, Lateral Acceleration, Steering Angle
Set 3 Lateral Acceleration, Lane position 0, Lane position 10, Lane position 20,

Lane position 30, Speed, Longitudinal Acceleration
Set 4 Lane position 0, Lane position 10, Lane position 20, Lane position 30,

Heading, Lateral Acceleration, Steering Angle, Speed, Longitudinal
Acceleration

34

3.6 HTK - Development tool

To develop this HMM-based recognition system, the HTK toolkit was used [12].

HTK provides an interface for speech recognition system and also facilitates USER/non-

speech data files. Thus HTK could be used to develop HMM-based system for lane

change detection. For details on the use of HTK please refer HTK manual available at

[12] and Appendix.

35

4. Results and Comparative Study

This section compares the results of the two machine learning frameworks

mentioned in this thesis with an existing one known as ‘Mind-Tracker’ [9, 10]. The mind-

tracker was originally designed in a cognitive architecture called ACT-R to model and

predict driver behaviors. Figure 13 below demonstrates the overall functioning of the

Mind-Tracking system. The basic idea is to run many driver models in parallel each

having its own intention about what to do next. The intention could be to change lane,

take a turn, maintain in a lane etc. All these models are matched with the human model

currently driving the car and the best matching model predicts driver behavior. For details

on the Mind-tracking system readers are encouraged to refer to [9, 10].

1

2

3
4

1

2

3
4

Figure 13: Mind-Tracker Overview

36

4.1 ROC curves

The mind tracking system uses the same data set as SVM and HMM in this thesis,

which makes these comparisons possible. Figure 14 presents the ROC curves for a

sample by sample recognition output from the three different frameworks. An ROC curve

plots the true positives (Y-axis) against the false positives (X-axis). Perfect recognition

would pull the curve through the point (0, 1).

ROC plot

0.0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

False Positives

T
ru

e
 P

o
si

ti
v
e
s

MindTracker SVM HMM

Figure 14: ROC Curves for the 3 Frameworks

The ROC curves clearly demonstrate the superiority of SVM recognition against the

other two. At 5% false positives SVM generate a sample by sample accuracy of more

37

than 97% against 80% for the HMMs and 74% for the Mind tracker. This means that

97% of all the lane change samples were correctly detected by SVM while only 5% of the

LK samples were detected as LC incorrectly. Experiments have shown that false alarm

tolerance rate for human being is just about 5% and therefore the results are compared at

that point.

4.2 Time Elapsed

Another way of looking at the recognition results is over time. Time is critical for

these predictions and the sooner they predict lane changes the better is the system.

0
10
20
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Elapsed Time

Pe
rc

en
ta

ge
 D

et
ec

te
d

SVM HMM MindTracker

2 sec1.5 sec1 sec0.5 sec0 sec

0
10
20
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Elapsed Time

Pe
rc

en
ta

ge
 D

et
ec

te
d

SVM HMM MindTracker

2 sec1.5 sec1 sec0.5 sec0 sec

Figure 15: Time Elapsed Chart

38

Figure 15 show charts to demonstrate the time taken for each framework to detect

a lane change. The time is calculated from the start of a lane change until the first sample

in LC instance is detected positive Both HMMs and SVMs are consistent in their

predictions which allow the assumption that once a sample is detected positive in an

instance all the following samples are detected positive.

The above figure shows that SVM can correctly predict more than 85% of the

lane change instances in less than 0.5 seconds (0.3 seconds) after the lane change starts.

Both HMM and the mind tracking system detect about 72% and 62% respectively. Thus

we conclude that SVM architecture is successful in inferring driver intentions very early

in time. We note that at 1 sec both HMM and SVM produce 85% correctness against

78% percent for Mind-tracker.

4.3 Lateral Movement

A third way to analyze the results is to compute how much distance does the

vehicle travel laterally before the lane change is detected. The lateral distance traveled by

the car is calculated relative to the point where the lane change starts. Figure 16 shows

comparative analysis for all three techniques.

39

0

10

20

30

40

50

60

70

80

90

100

0 0.175 0.35 0.525 0.7 0.875 1.05 1.225 1.4 1.575
Lateral Movement

Pe
rc

en
ta

ge
 D

et
ec

te
d

MindTracker SVM HMM

½ lane¼ lane0 lane

0

10

20

30

40

50

60

70

80

90

100

0 0.175 0.35 0.525 0.7 0.875 1.05 1.225 1.4 1.575
Lateral Movement

Pe
rc

en
ta

ge
 D

et
ec

te
d

MindTracker SVM HMM

½ lane¼ lane0 lane

Figure 16: Lateral Movement Chart

SVM, HMM and Mind tracking system detects about 85% of the lane change instances

before the car laterally moves 1/4 of the lane. In case of SVM we observe that it achieves

about 86% accuracy even before the car moves 1/8 of the lane laterally. HMM prediction

begins with a low accuracy initially but performs well at 1/4 of the lane and remains

constant there after.

40

The following charts show comparative results from the three frameworks at essential

points of comparison. On a sample by sample recognition scale the three frameworks are

compared at 1% and 5% false positive rates. For the other two charts, the comparison is

made for the percentage of instances correctly predicted at different time and lateral

distances by each method. These results suggest that SVMs perform best as compared to

the other two frameworks.

ROC plot

0

20

40

60

80

100

1% 5% 7%

MindTracker
SVM
HMM

Figure 17: ROC Comparison Chart

41

Time Elapsed chart

0
10
20
30
40
50
60
70
80
90

100

0.5 sec 1 sec

Time Elapsed

Pe
rc

en
ta

ge
 d

et
ec

te
d

MindTracker
SVM
HMM

Figure 18: Time Elapsed Chart

Lateral movement chart

75

80

85

90

95

100

1/4 lane 1/2 lane

Lateral Movement

P
er

ce
nt

ag
e

de
te

ct
ed

MindTracker
SVM
HMM

Figure 19: Lateral Movement Chart

42

5. Graph theory based Lane Change Detection

5.1 Introduction

The remaining section of the thesis presents a brief overview of the graph-based

theoretic formulation of detecting lane change. This technique has only been partially

explored and therefore has a special place at the end of the thesis.

Given the different features for a driving scenario like speed, acceleration,

steering angle, etc. we study the correlation among these features during a lane change. A

layered graph, with each layer having n nodes (n is the number of features) can be

constructed. The edges in the graph go from one layer to the next and their weights

represent the degree of correlation. Upon obtaining reference graphs for typical lane

change instances we propose to match the input graphs with these reference graphs

using efficient matching techniques.

The problem of lane change (LC) detection could prove vital for issues of driver

security. Most algorithms used until now use the original form of data and try to study

specific trends in the features over the interval of lane change instance. However none of

the earlier algorithms used the fact that the dependency between two features could be

significant. Two features could be correlated positively or negatively. Our approach

utilizes the fact that some pairs of features display strong dependencies between each

other during lane changes, a situation that does not occur during normal lane keeping

(LK). More efficient and robust matching algorithms can take care of noise factor and

time invariance of a lane change instance.

43

5.2 Overview of the Technique

5.2.1 From Continuous Stream of Data to Correlation Matrices

The input data is a continuous stream of values of the different features sampled

at the rate of 10 samples per second. Depending on the maximum and minimum limits

of these features we normalize each single value between [0,1]. The correlation

coefficients between any pair of features is computed using these normalized values

over a period of time. After studying the experimental data, it was observed that a time

frame of 2 seconds would capture the dependency structure between the features most

efficiently with minimal effect of noise in the data. Next significant change, if any,

in the dependency structure was best observed at a shift of 1/2 second. Figure 20

shows the construction of first two correlation matrices from continuously varying

samples of data. The correlation coefficient CC[X, Y] between two features X and Y can

be computed as follows

where,

cov [X, Y] = covariance between feature X and Y,

σX = standard deviation of feature X,

σY = standard deviation of feature Y.

The values of CC[X, Y] lie between [-1, 1]. A negative correlation coefficient

represents that when one feature increases, the other decreases while a positive

44

correlation coefficient represents change in the same direction. Thus given values of

these features over a given period of time we can compute the correlation matrix.

Figure 20: Continuous Stream to Matrices

5.2.2 From Correlation Matrices to Graphs

A single correlation matrix will represent one layer in the graph as shown in

Figure 21. An edge from node X of one layer to node Y of the other will have a weight

given by the CC [X, Y]. Next layer in the graph is built from the second correlation

matrix obtained with a shift of 1/2 second from the previous window. Note that the

correlation matrix is symmetric i.e. CC[X, Y] = CC[Y, X]. Therefore we consider only

the upper triangle of the matrix resulting in only downward pointing edges in the graph.

45

Thus progressively we can compute layers of our graph by shifting window by 1/2

second and calculating the correlation matrices.

Figure 21: Matrix to Graphs

5.2.3 Construction of the Database

We need to construct reference graphs that would represent a typical lane change.

We could classify all the instances of lane change into few patterns based on the direction

of turn (say, left-to-right or vice versa), distance of lead car, acceleration etc. For

example, one sample pattern- say pattern ρ - would be change of lane from left to right

when the car/truck in the front is going slow and the right lane is faster. The driver tends

to accelerate to catch up with the speed in the right lane, close in with the slow car/truck

in the front and then drift towards the other lane. Another example would be the case

46

when both lanes are equally fast but driver needs to change lane to take either a

turn/exit/merge. Each such pattern would have a reference graph in our database.

A lane change would last for about 4 to 5 seconds maximum from the time when

the driver starts his final drift towards the other lane until he crosses the lane. To

construct a reference graph for a particular pattern of lane change last 4.5 seconds of data

before a lane change was observed. 4.5 seconds of data with a window size of 2 seconds

per layer and shift of 1/2 second for the next layer would give us 7 layers in the reference

graph. Figure 22 shows the construction of reference graph of a pattern ρ from all the

instances of that pattern found in the experimental data. To calculate an average

correlation matrix for a layer we list together corresponding windows from all the

instances of pattern ρ to give a single window. The correlation matrix derived from this

window would represent a corresponding layer in the reference graph. Thus, this layer so

obtained is representative of all the instances of that pattern of lane change. The

dependencies so obtained between features would be typical of pattern ρ. Figure 22

shows construction of first two layers of the graph.

47

Figure 22: Construction of Database

5.2.4 Simple Graph-Matching Algorithm

Figure 23 shows the general lane change detection strategy. Input graph is

matched against pre-stored database of graphs using matching and data mining

techniques to differentiate between LK and LC.

48

Figure 23: Matching and Data Mining Strategies

A simple matching algorithm between two graphs maintains all the edges between

two layers irrespective of their weights and performs a one-to-one match between edges.

A total of n features would give us n*(n-1)/2 edges going from one layer to the other. In

a complete reference graph (all 7 layers) with no edges removed let m be the total number

of edges. We compare weights between corresponding edges. Figure 24 shows the simple

matching algorithm. Let CCI[X, Y] be the weight of edge[X, Y] in input graph and let

CCR[X, Y] be the weight of edge[X, Y] in reference graph. We compute the degree of

matching between these two edges as follows

Degree of matching = 0 if CCI[X, Y]*CCR[X, Y] < 0

 = 1 Otherwise

49

Upon adding the degree of matching for each edge in a graph we get the degree of

matching between two graphs by summing up for all the edges in the graph. This will be

some value less than m. More than 70 percent matching i.e. if degree of matching

between graphs >=0.7*m we would typically predict a possible lane change ahead in the

input data.

Figure 24: Degree of Matching

50

5.3 Results

The input car data were provided by Nissan Motor Co., Ltd. The different features

that were used for analysis were accelerator pedal pressure, acceleration, lead car

distance, steering angle, steering torque, yaw-rate, car's longitudinal acceleration,

heading, lateral position at 0 distance, lateral position at 30m, lateral acceleration, and

steering angle velocity.

Our database consists only 4 reference graphs of very frequently observed

patterns. Every input graph would be compared with each of these 4 reference graphs

and a degree of matching was obtained against each reference graph individually. A

typical input file would be a continuous stream of data consisting of instances of both LC

and LK for a car over a sufficiently long period of time. The matching program would

generate a 7-layered input graph for every interval of 4.5 seconds. The next input graph

from the file would be obtained by a shift of 1/2 second interval. Essentially 4 seconds of

data from the previous graph is reused. Thus a continuous stream of input graphs is fed

into the matching program and input graphs with degree of matching higher than certain

cutoff were screened and noted down.

Table 9 shows the percentage of success/failure in predicting lane changes with

different cutoffs. More and more experiments on the input data indicated that the

reference graphs constructed were more representative of LC patterns in general than any

pattern in particular.

51

Table 9: Results with Graph Technique

CUTOFF % LC instances
correctly
detected (%)

LC patterns
correctly
detected (%)

LC instances
falsely
detected (%)

65 75 20 11

70 60 12 1.2

75 22 6 0.001

At this point, we cannot compare the graph-based algorithm to the other three

frameworks. This is mainly because the algorithm does not produce continuous

recognition. Also the technique has only been partially explored and uses an oversimplified

graph-matching algorithm. A continuous output can be produced by a sliding the window

by one sample at a time. However, robust techniques such as those mentioned in the future

work are required to build a promising recognition system.

52

6. General Discussion

As observed from the comparative analysis of the three different frameworks, it is

evident that both SVM-based and HMM-based learning methods are successful in

predicting driver actions. Both these techniques produce better results than the existing

Mind tracking system in most aspects. The two frameworks have capabilities to produce

continuous recognition on a sample by sample basis. Also as far as recognition is

concerned, it occurs in real time in both these frameworks. The HMM-based technique

does better in terms of early prediction when compared to the mind-tracking system.

However the mind-tracking system does better when compared over lateral movement.

The SVM framework proved very effective because of high sample by sample

prediction rate which is highly desired in a real time scenario. Results show a significant

23% better prediction accuracy compared to the mind tracking system. SVM have also

demonstrated excellent accuracy in terms of early prediction with respect to both time

and distance. More than 85% of the lane change intentions were detected in less than 0.3

seconds after the driver initiates his action. Thus it can be concluded that the SVM based

framework not only offers accurate recognition capabilities for driver’s intentions but

also assures highly reliable prediction rate. Such a framework can improve the

performance of a driver support system due to its early prediction.

Although the SVM recognition system has demonstrated good capabilities for

early recognition the technique can be improved for robustness. Future work on the

framework aims at stochastic techniques for feature selection such as t-test, maximum

likelihood test or feature elimination method [21]. Such methods will offer a better

53

understanding to select the right feature set. Selecting the optimal feature set will enhance

performance of both HMM and SVM recognition. In addition, systematic kernel

estimation techniques need to be employed for to explore the best kernel space. Recent

work on kernel estimation [18] suggests the use of semi-definite programming to estimate

the right kernel. Complex binary search techniques can be applied to find the optimal

variance pattern within a temporal window of lane change. This will allow the system to

capture multiple patterns within the window more effectively.

The graph matching algorithm explained is oversimplified and is vulnerable to

erroneous matching. Not every feature is dependent on every other to the same extent. It

might be the case that two features are completely independent resulting in no edge

between them while some features may have strong dependency between them. Weights

of edges between two independent nodes (features) might match coincidently adding to

the degree of matching. Some simple modifications that would promise better results are

as follows

• Deleting edges with weights close to zero.

• Classifying LC patterns more precisely and augmenting reference graphs in the

database.

• Augmenting the database with reference graphs for LK instances and eliminate input

graphs similar to LK patterns.

• Applying scaling factor to degree of matching between edges. Some edge weights in

the reference graph display high contrasts between LC and LK instances. We might

multiply degree of matching with a suitable scale to represent the contrast.

54

We intend to use more robust algorithms that might use the topology of the graph

to find a match. Edge-wise matching for large database could be time consuming.

Indexing on the graphs using different signatures like eigen-values of the incidency

matrix or carter pillar-dimension could prove really significant. Robust graph matching

algorithms like bipartite graph matching and edit-distance based matching could also be

applied.

 SVM and HMM have been independently successful in detecting driver intentions

however a combination of the two frameworks may have a better answer. HMM is good

at mapping temporal variations and SVM offer a powerful sample by sample prediction

accuracy. A combined recognition system that can inherit the merits of these two

frameworks may prove useful.

 A fuller range of driver behaviors like turns, stops, parking etc. can be tested on

the same frameworks to observe the recognition capabilities. The frameworks have

proved very effective for the lane change intentions and may have a solution of other

intentions too.

Driver safety is a critical issue and for the same reason inferring driver intentions

is proving to be critically important. Machine learning techniques like those presented in

this thesis have shown remarkable potential for very early and reliable prediction of

driver intentions. Application of such techniques in real world automobiles will definitely

take the issue of driver security to the next level of assurance.

55

List of References

[1] Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning,
20:273-295.

[2] Schölkopf, B., Burges, C., and Vapnik, V. (1995). Extracting support data for a task.
In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International
Conference on Knowledge Discovery and Data Mining. AAAI press, Menlo Park, CA.

[3] Blanz, V., Schölkopf, B., Bűlthoff, H., Burges, C., Vapnik, V., and Vetter, T. (1996).
Comparison of view-vased object recognition algorithms using realistic 3d models. In c.
von der Malsburg, W. von Seelen, J. C. Vorbrűggen, and B. Sendhoff, editors, Artificial
Neural Networks – ICANN’96, pages 251 – 256, Berlin. Springer Lecture Notes in
Computer Science, Vol. 1112.

[4] Schmidt, M. (1996). Identifying speaker with support vector networks. In Interface
’96 Proceedings, Sydney.

[5] Osuna, E., Freund R., and Girosi, F. (1997). An improved training algorithm for
support vector machines. In Proceedings of the 1997 IEEE Workshop on Neural
Networks for Signal Processing, Eds. J. Principe, L. Giles, N. Morgan, E. Wilson, pages
276 – 285, Amelia Island, FL.

[6] Joachims, T. Text categorization with support vector machines. Technical report, LS
VIII Number 23, University of Dortmund, 1997.

[7] Wipf, D. & Rao, B. (2003). Driver Intent Inference Annual Report, University of
California, San Diego.

[8] Tipping, M. E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine,
Journal of Machine Learning Research vol. 1, pp. 211-244.

[9] Salvucci, D. D. (2004). Inferring driver intent: A case study in lane-change detection.
In Proceedings of the Human Factors Ergonomics Society 48th Annual Meeting.

[10] Salvucci, D. D., & Siedlecki, T. (2003). Toward a unified framework for tracking
cognitive processes. Proceedings of the 25th Annual Conference of the Cognitive Science
Society. Mahwah, NJ: Lawrence Erlbaum Associates.

[11] Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, Vol. 77, NO. 2.

[12] HTK Speech Recognition Toolkit, http://htk.eng.cam.ac.uk

[13] Oliver, N. & Pentland, A. P. (2000). Graphical Models for Driver Behavior
Recognition in SmartCar. Proceedings of the IEEE Intelligent Vehicles Symposium 2000.

56

[14] Kuge, N., Yamamura, T. and Shimoyama, O. (2000). A Driver Behavior
Recognition Method Based on a Driver Model Framework. Intelligent Vehicle Systems
(SP-1538).

[15] Salvucci, D. D., & Liu, A. (2002). The time course of a lane change: Driver control
and eye-movement behavior. Transportation Research Part F, 5, 123-132.

[16] Evgeniou, T., Pontil, M., & Poggio, T. (2000). Statistical Learning Theory: A
Primer. International Journal of Computer Vision 38(1), 9-13.

[17] Vapnik, V. (2000). The Nature of Statistical Learning Theory. 2nd Ed., Springer,
New York.

[18] Lanckriet, G. R. G., Cristianini, N., Barlett, P., Ghaoui, L. E., & Jordan, M. I.
(2004). Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine
Learning Research 5, pp. 27-72.

[19] Jaakkola, T. & Haussler , D. (1998). Probabilistic Kernel Regression models. In
Proceedings of Neural Information Processing Conference.

[20] Mohan, A. (1999). Robust Object Detection in Images by Components. Master’s
Thesis, Massachusetts Institute of Technology.

[21] Vapnik, V.N. (1998). Statistical Learning Theory. Wiley: New York.
 [22] Pentland, A.and Liu, A. (1999). Modeling and prediction of human behavior.
Neural Computation 11, 229-242.

[23] Federal Highway Administration (1998). Our nation’s highways: Selected facts and
figures (Tech. Rep. No. FHWA-PL-00-014). Washington, DC: U. S. Department of
Transportation.

[24] Ahmed, K. I., Ben-Akiva, M. E., Koutsopoulos, H. N., & Mishalani, R. G. (1996).
Models of freeway lane changing and gap acceptance behavior. In J.-B. Lesort (Ed.),
Transportation and Traffic Theory. New York: Elsevier Science Publishing.

[25] Gipps, P. G. (1986). A model for the structure of lane-changing decisions.
Transportation Research – Part B, 5, 403-414.

[26] Finnegan, P. and Green, P. (1990). The time to change lanes: A literature review
(Tech. Rep. No. UMTRI-90-34). Ann Arbor, MI: The University of Michigan
Transportation Research Institute.

[27] Talmadge, S., Chu, R. Y., & Riney, R. S. (2000). Description and preliminary data
from TRW’s lane change collision avoidance testbed. In Proceedings of the Intelligent
Transportation Society of America’s Tenth Annual Meeting and Exposition.

57

[28] Fawcett, T. (2003). ROC graphs: Notes and Practical Considerations for Data
Mining Researchers. HP Laboratories, Palo Alto.

58

APPENDIX A

Table 10: Complete Feature Set

Feature Description
Brake Pressure Brake Pressure
BrakeSW Brake SW
Curvature0 Road Curvature (radians)
Distance Lead Car Distance (meters)
Heading0 Heading
laneDetectFail Lane Detection Failure
LatG Lateral Acceleration
Lane Position 0 Lane Position at 0 meter
Lane Position 10 Lane Position at 10 meters ahead
Lane Position 20 Lane Position at 20 meters ahead
Lane Position 30 Lane Position at 30 meters ahead
lcFlag Lane Change flag
lcLeftRight Lane Change Signal – Left or Right
lcPattern Lane Change Pattern
lonAccel Longitudinal Acceleration
Speed Speed
Steering Angle Steering Angle
Steer Rate Steering Rate
Steer Torque Steering Torque
TurnSigLeft Turn Signal Left
TurnSigRight Turn Signal Right
Vr Steering Angle Velocity
Yaw rate Yaw Rate

Please note that acceleration mentioned in the thesis can be easily derived from speed
feature. The simple definition used here is as follows,

acceleration (t1) = speed(t1) – speed(t0)

59

1. Using WinSVM

The WinSVM software available at www.kernel-machines.org was used for the

purpose of my experiments with SVMs. The software offers an easy interface to use

SVMs on a Windows platform.

WinSVM offers easy interface to both train SVMs and test them for binary

classification schemes. Also it offers easy interface to change between different kernels

like linear, polynomial etc. Each training sample consists of a vector of features. A

training/testing file given as input to the WinSVM software has the following grammar

and includes one sample per line of the file.

<class> .=. +1 | -1 | 0

<feature> .=. integer

<value> .=. real

<line> .=. <class> <feature>:<value> <feature>:<value> ... <feature>:<value>

The class label and each of the feature/value pairs are separated by a space

character. Feature/value pairs MUST be ordered by increasing feature number. Features

with value zero can be skipped. The +1 as class label marks a positive example, -1 a

negative example respectively. A class label of 0 indicates that this example should be

classified using transduction. The predictions for the examples classified by transduction

are written to the file specified through the -l option. The order of the predictions is the

same as in the training data.

60

In my experiments I use class labels with values +1 and -1, where +1 denotes a

lane change (LC) sample and -1 denotes a lane keeping (LK) sample. Upon successfully

training the SVMs, WinSVM gives out a model file (*.mdl) that stores in the values of

the support vectors and other metadata like the number of training examples (both

positive and negative), type of kernel used , kernel parameters if any.

This model file is used for recognition when test files are given as input. The

recognition results are output in a results file (*.rsl). The results file contains the

recognition output of one test sample per line. Each line consists of the distance of that

test point from the hyperplane and the sign indicates whether that sample was classified

as positive or negative. A negative sign indicates that it was classified as a LK sample

and vice versa for positive sign. Thus higher the absolute value of the distance indicates

higher confidence to predict class labels.

61

2. HTK Development tool

To develop the HMM-based recognition system, the Entropic’s HTK toolkit was used.

HTK provides an easy interface for speech recognition system but at the same time

facilitates USER/non-speech data files. Thus HTK could be used to develop HMM-based

system for lane change detection.

The current work uses HERest and HVite tools from the HTK tool kit. For details on the

operation of these tools users are requested to refer to the HTK manual available on the

official HTK website [12].

Steps in Training and Recognition: (may not include in actual thesis)

1. Creating raw HMM definition files that defines the number of the states in the

HMM, size of the data stream per state, type of HMM (left-right etc)

2. Processing raw data files to select the LC and LK training instances into separate

files (LK*.out & LC*.out)

3. Creating label/transition files (LK*.lab & LC*.lab) for each of the training

instances.

4. Converting the text files created in step 2, 3 into binary format using MATLAB

code. HTK recognizes only binary format for input training files.

5. Training HMM parameters within the definition files using all the training

examples to estimate mean, variances and transition probabilities [HERest].

6. Creating test files using steps 2, 3 & 4 into binary format required by HTK.

7. Decoding test samples using the HMMs [HVite]

62

8. Analyzing the results by calculating the LC score from the log probabilities and

plotting ROC curve.

 LC Score is calculated as follows:

