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ABSTRACT 
Pattern Recognition Techniques to Infer Driver Intentions 

Hiren M. Mandalia 
Dr. Dario Salvucci, Ph.D. 

 
 
 
 
Driving is a complex task that requires constant attention from the mind and the body. 

Automobile drivers today are under high risks, thanks to the ever-expanding telematics 

industry, cell-phone driving and other distractions. Inferring driver intentions, especially 

critical ones like changing lanes, is therefore necessary for any intelligent driver support 

system. This thesis explores different methods to infer driver's intention to change lanes. 

Experimental data were collected that observed driver's behavior (e.g. speed, steer angle, 

gas pedal pressure) and environmental data around the driver (e.g. distance of the car in 

front). With the hypothesis that such data would display significantly different patterns 

during a lane change versus lane keeping, this problem was formulated as a pattern 

recognition problem. Two different techniques were studied in detail to solve this 

problem, namely support vector machines (SVMs) and hidden markov models (HMMs). 

These two machine learning techniques showed promising results. SVMs have been 

particularly effective in early detection of lane changes with a very high sample-by-

sample prediction rate. In addition, this thesis compares these techniques with a new 

“mind tracking” approach [9, 10] and also proposes a new graph-based approach to detect 

lane changes.  
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1. Introduction 
 

Driving is a complex skill and is getting increasingly complex with the growing 

popularity of in-car electronics, navigational devices, cell phones and other telematics 

devices. With this complexity comes the increased risk of driving. Automobile 

manufacturers have continually sought to devise innovative driver support systems that 

can reduce such risks and make the driving experience more pleasurable. Such support 

systems provide various kinds of help to the driver while driving and especially during 

critical maneuvers such as changing lanes, sharp turns, etc. However, for any such system 

to be effective - i.e. offer the right kind of help at the right time - it is imperative that we 

know what the driver is doing or trying to do. 

 

One can argue as to what is the real necessity to infer driver intentions. The most 

critical reason is safety. Let us look at an example to demonstrate this. Figure 1 shows a 

driver in a black vehicle rapidly approaching a slow-moving vehicle in the front. At this 

point the driver has two options as shown in the figure. 

(1) To accelerate and steer into the other lane 

(2) To slow down and stay in the same lane 
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Figure 1: Example to Show Different Driver Actions 
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If the driver now decides to accelerate and steer into the other lane but the support 

system thinks that the driver is going straight and helps to slow down, an accident could 

be unavoidable. Let us say on the other hand, if the driver decides to stay in the lane but 

the system thinks otherwise and helps to steer – again, an accident might occur. Such 

disasters can be avoided only if the support system can accurately infer the driver’s 

intention. Thus for any intelligent driver support system it is very essential to know the 

expected behavior of the driver. The earlier these intentions are inferred, the more safely 

the driver can utilize the support system. 

 

One of the most common and critical tasks during driving is changing lanes, 

therefore it becomes imperative that driver support systems predict drivers’ intentions to 

change lanes accurately. This thesis explores the problem of inferring driver intentions 

from a pattern recognition perspective. It presents a background of related work in this 

field and then discusses in detail two pattern recognition frameworks investigated to 

achieve real-world solutions.  

 

1.1 Recent Work 

Vast attention has been given to the driving task in general but much less attention 

has been directed to lane changing, despite its ubiquity in common driving environments 

— such as highway driving, which accounts for roughly 70% of vehicle miles on 

American roadways [23].  Existing work on lane-changing behavior in large part 

emphasizes the decision-making aspects of the task, particularly gap acceptance and the 

decision of when to change lanes [24, 25]. Other studies have addressed different aspects 
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of lane changing, from behavioral aspects such as typical durations [26] to practical 

development of lane-change collision warning systems [27]. Very little work has been 

done on recognizing driving maneuvers, especially critical ones like lane changing.  

 

Some recent endeavors in this direction include work from Pentland and Liu 

(1999), Kuge et al. (2000), and Salvucci and Siedlecki (2003). The first two approaches 

were based on the concept that human behavior is made up of a sequence of internal 

‘mental’ states that was not directly observable. These approaches used a technique 

called hidden markov models (used in Speech Recognition) that are probabilistic models 

powered by robust expectation-maximization methods. Pentland and Liu reported that 

their recognition system could predict changes in the first 0.5 second of the maneuver. 

However their recognizer offers only discrete recognition as opposed to continuous 

recognition (as reported in this thesis). Second, Kuge et al. reported results with a 

continuous recognition system; however, their system only uses steering-based features 

and has no knowledge of the surrounding environment, which clearly affects whether and 

when people make lane changes. This thesis also proposes a hidden markov model based 

recognition system but uses a wide range of features including environmental features 

like lane position. 

 

Salvucci and Siedlecki proposed a mind tracking approach [9, 10] that uses a 

cognitive architecture called ACT-R to model driver’s behavior. The mind tracking 

system essentially isolates a temporal window of driver data and extracts its similarity to 

several virtual drivers that are created probabilistically using a cognitive model. However 
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it does not utilize the fact that the measurable components indicative of the driver state 

may often reside in some high dimensional feature space and data can be easily classified 

by finding a linear separating hyperplane. This thesis reports the use of Support Vector 

Machines that address this issue optimally. 

 

1.2 Proposed Approach 

This thesis concentrates on detecting lane change intentions using two separate 

machine learning frameworks, Support Vector Machines (SVMs) and Hidden Markov 

models (HMMs). Each framework has been employed independently to infer driver 

behavior. The data used for the experiments were collected from real instrumented 

vehicle that recorded different behaviors of the driver. The data are highly multimodal in 

nature. Correct implementation of each framework requires thorough understanding of 

the driver’s behavior (lane changing vs. lane keeping). Each feature was examined 

closely to infer any specific patterns or trends displayed particularly during the time 

course of a lane change. Studies about patterns during a lane change [15] have revealed 

that drivers exhibit specific patterns for steering, acceleration and eye gazes. Careful 

investigations revealed that many features in addition to those mentioned above also 

contributed significantly to exhibit distinct trends. These observations clearly suggested 

that the driving data vary significantly during a lane change against normal driving (lane 

keeping). This served as the prime motivation to use pattern recognition techniques to 

recognize specific behaviors. Currently these techniques are used specifically for 

detecting lane changes, but they can be applied to a fuller range of driver intentions such 

as left and right turns, stops, parking, etc. 
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1.2.1 Defining a Lane Change 
 

To detect a lane change (LC) it is critical we define it clearly. Precisely what time 

window within an entire lane change instance should be marked as lane change? Often 

drivers make initial unsuccessful attempts to cross over to the other lane. There are many 

subjective choices for the definition of a lane change. However the definition of lane 

change used in [9] was found to be most reasonable. Accordingly, a lane change starts 

when the vehicle moves towards the other lane boundary and never returns i.e. the final 

shift of the driver towards the other lane. Any reversal cancels the lane change. The lane 

change ends when the vehicle crosses the lane boundary.  

 

We also assume that the lateral movement of the automobile towards the other 

lane should be greater than or equal to 3.5 m/s, meaning that the LC can take at most 10 

seconds. (Note that average width of the road is approximately 3.5 m.) 

 
 
 

 
Figure 2: Lane Change Definition 

 
 

Figure 2 shows the path followed by a driver during a typical lane change. Note 

that before making the final attempt to steer into the next lane, the driver made a few 

start 

end 
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unsuccessful attempts, which are ignored in the final definition. The time window defined 

by start and end marks the definition of lane change.  

 

1.2.2 Continuous vs. Discrete Recognition 

There are essentially two ways of framing the problem of lane change 

recognition: continuous (real-time) or discrete recognition.  Discrete recognition 

essentially means recognizing driver intention after every discrete segment of time or 

when an event occurs. An event in this case would be a lane change (LC) or lane keeping 

(LK). Continuous recognition on the other hand produces recognition results continually. 

Driving data is a continuous stream of samples where each sample is a vector of feature 

values. Thus a continuous recognition will generate recognition output at every sample. 

Essentially, in discrete recognition entire block of samples is classified together. Figure 3 

below diagrammatically describes this difference.  

 
 

LK LK LC LC LC LC LK

LC LC

a. Discrete Recognition

b. Continuous Recognition

LK LK LC LC LC LC LK

LC LC

a. Discrete Recognition

b. Continuous Recognition  
Figure 3: Discrete vs. Continuous Recognition 
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For an intelligent driver support system it is required that a continuous recognition 

output is generated. With the definition of lane change and continuous recognition, the 

problem domain is clearer. For a continuous pattern recognition system, every sample in 

the lane change window must be recognized as a lane change and others as lane keeping.  

 
1.2.3 Data Collection 
 

The data sets used for the experiments in this thesis were collected using a real 

instrumented vehicle at the Nissan Motor Company in Oppama, Japan. Four driver 

subjects were asked to drive on a Japanese multi-lane highway environment for one hour 

each. The drivers spent approximately one hour driving through smooth and dense traffic 

conditions. This provides us with a good representation of lane changes of different time 

lengths. The drivers were given no specific goals or instructions and they were allowed to 

drive on their own. Electronic sensors from the car captured values for driver actions like 

gas pedal pressure, steering angle, speed etc. Using digital cameras and advanced vision 

algorithms, environmental features around the driver were recorded. Some of these 

include distance of the lead car, lane position etc. Three additional cameras were installed 

inside the car that captured video images of (i) the driver (side profile), (ii) gas pedal and 

brakes movements, and (iii) front view (as viewed by the driver). However data from 

these video images were used only for initial analysis. Figure 4 below shows a screen 

dump of a video combining streams from different cameras. In each of the two machine 

learning frameworks discussed in the following sections 2/3rd of the data was used for 

training and the remaining 1/3rd was used for testing. A complete list of all the features 

with their brief explanation is provided in Table 10 in the Appendix A. The data was 

collected at a sampling rate of 10 Hz.  
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Figure 4: Screen Dump of the R2 Video 
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2. Support Vector Machine Recognition 
 

This section discusses the use of Support Vector Machines (SVMs) towards 

continuous lane change detection. Support Vector Machines are learning machines that 

can perform binary classification (pattern recognition) and real valued function 

approximation (regression estimation) tasks. SVMs have been widely used for isolated 

handwritten digit recognition [1, 2], object recognition [3], speaker identification [4], and 

face detection in images [5] and text categorization [6]. The chapter reviews the basic 

functioning of SVMs, motivation for using SVMs for lane change detection, training and 

recognition of Lane Changes. The results, in terms of the prediction accuracy (true 

positive rates and false positive rates) and other measures are discussed in the concluding 

section. 

 

2.1 Brief description of Support Vector Machines 
 

‘Support vector machines’ (SVM) are based on statistical learning theory that 

uses supervised learning [16]. In supervised learning, a machine is trained instead of 

programmed, to perform a given task on a number of input-output pairs. According to 

this paradigm, training means choosing a function which best describes the relation 

between the inputs and the outputs. The central question of statistical learning theory is 

how well the chosen function generalizes, or how well it estimates the output for 

previously unseen inputs.  
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In general, any learning problem in statistical learning theory will lead to a solution of the 

type 

 

where the xi, i = 1,…, l are the input examples, K a certain symmetric positive definite 

function named kernel, and ci a set of parameters to be determined from the examples. 

For details on the functioning of SVM readers are encouraged to refer to [1]. 

 

In short, the working of SVM can be described as statistical learning machines 

that map points of different categories from n-dimensional space into a higher 

dimensional space where the two categories are more separable. It tries to find an optimal 

hyperplane in that high dimensional space that best separates the two categories of points.  

 
 
 

 
(Source: http://www.support-vector.net) 

Figure 5: Points Separated by Hyperplane 
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Essentially, the hyperplane is learned by the points that are located closest to the 

hyperplane which are called support vectors. There can be more than one support vector 

on each side of the plane. Figure 5 shows an example of two categories of points 

separated by a hyperplane. 

 

2.2 Motivation for SVM 

 

Assessing driver state is a substantial task, complicated by the various nuances 

and idiosyncrasies that characterize human behavior. Measurable components indicative 

of driver state may often reside in some high dimensional feature space [7]. Researchers 

have found that SVM have been particularly useful for binary classification problems. 

SVMs offer a robust and efficient classification approach for the problem of lane change 

detection because they map the driving data to high dimensional feature spaces where 

linear separating hyperplanes are sufficient to separate to two categories of data points. A 

correct choice of kernel and data representation can lead to good solutions. The problem 

of choosing the correct kernel is not trivial. For the purpose of this work, different types 

of kernels were employed to compare their performances at the classification task. 

However more sophisticated techniques now exist to allow systematic kernel estimation 

[18]. The benefits of SVMs over using HMM based methods are described later when the 

HMM framework is explained in detail.  
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2.3 Kernel Selection and Data Representations 
 

A key issue in using the learning techniques is the choice of the kernel K in Eq 

(1). The kernel K(xi, xj) defines a dot product between projections of the two inputs xi and 

xj, in the feature space (the features been {φ1(x), φ2(x),…, φN(x} with N the 

dimensionality of the RKHS). Therefore the choice is closely related to the choice of the 

“effective” representation of the data, e.g. the image representation in a vision 

application. The problem of choosing the kernel for the SVM, and more generally the 

issue of finding appropriate data representations for learning, is an important one [16]. 

The theory does not provide a general method for finding “good” data representations, 

but suggests representations that lead to simple solutions. Although there is not a general 

solution to this problem, recent experimental and theoretical work provides insights for 

specific applications [16, 19, 20, 21]. However recent work from researchers [18] has 

shown that for a given data representation there is a systematic method for kernel 

estimation using semi-definite programming. Estimating the right kind of kernel remains 

an important segment of the future work with this kind of work. Once the right kind of 

kernel that best learns the available data is known the classification can be more accurate. 

At this point of time the available data was tested against different types of kernel 

functions to know the performance of each of them experimentally. Some of the kernel-

types tested were linear, polynomial, exponential and gaussian. However, it was observed 

that all the kernels performed as good as or worse than linear kernel, as will be reported 

in the results. All the final results with SVM classification are therefore analyzed with 

linear kernel. 
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2.4 Training Support Vector Machines for LC/LK 
 

The following few sections describe the issues with using support vectors 

machines for lane change detection and the solutions that were suggested. 

 
2.4.1 Choosing a Window of Time 
 

One issue with using SVM for lane change detection was that lane changes do not 

have fixed time length. Lane changes vary anywhere between 1 to 5 seconds. Direct 

temporal mapping between the data and SVM classification is not possible. Longer lane 

changes see a smooth transition in features values like steering angle, lane position, 

acceleration, etc. whereas shorter ones have a relatively abrupt transition.  

 

Driving data is highly temporal in nature - that is the feature values change as a 

function of time. Moreover, one feature may be a function of one or many other features. 

The exact inter-dependency between features or within features themselves is not clear. 

In the domain of detecting driving maneuvers like lane changes, the change in the 

features with respect to time and their inter-dependency is more critical than the 

individual values of the features. For example, studies have shown that during a lane 

change drivers exhibit an expected sine-wave steering pattern except for a longer and 

flatter second peak as they straightened the vehicle [15]. The figure below shows such a 

pattern of steering against time.  
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Figure 6: Steering Angle Displays a Sine-wave like Pattern (Source: Salvucci & Liu,’02) 

 
 
 
Drivers first steer toward the destination and then back to center to level the vehicle on a 

steady path to the destination lane. Then, in a continual smooth movement, drivers steer 

in the other direction and back to center to straighten the vehicle in the destination lane.  

 

Such patterns can only be observed (by humans) or learned (by machines) when a 

reasonable sized window of samples is observed. Thus for all practical purposes when 

training the SVM for a lane change or lane keeping an entire window is input instead of 

discrete samples.  

 

To pick up training samples, the entire stream of training data is broken down into 

fixed size smaller windows. Each window corresponds to a training example. The 

windows can also overlap with each other. The size (time length) of the window that 

adequately captures the patterns within the features is a free parameter and therefore left 

to experimentation. Various window sizes were analyzed between 1 second to 5 seconds. 

The results with different window sizes are reported at the end of this chapter. A window 

size of 1.2 seconds (~12 samples) works well to train SVM.  
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Another key issue in modularizing the data stream into smaller windows is how to 

label each window. Using the definition of lane change (explained in section# 1.2.1), 

each sample on the training data can be labeled positive (LC) or negative (LK). However, 

a single training example consists of multiple samples, each sample with its own label.  

 

The last sample in a window offers the latest information which is also used to 

label the entire window. Thus if the last sample in a window of size N samples is positive 

(LC), the entire window is marked positive and vice versa. But most importantly, we are 

most interested in the last sample as the most recent one. One must remember that to 

predict a classification label for any sample only the preceding samples can be used. Thus 

the last sample is the best indication of what the driver is currently trying to do.  

 
 
 

t1 t3 t4 tnt2

t0 t2 t3 tn-1t1
LC/LK

t0
LC/LK

tn-1t1 t3 t4 tnt2

t0 t2 t3 tn-1t1
LC/LK

t0
LC/LK

tn-1

  
Figure 7: Moving Window of Constant Size 

 
 
 

As shown in Figure 7 a single window of size N is defined by N samples at times 

{t0, t1,…, tN-1}. The label of sample at tN-1 is used to classify the entire window. A 

moving window is used as shown in the figure. Whenever a new sample is obtained, it is 

added to the moving window and the last sample is dropped thus maintaining a constant 

size window.  
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2.4.2 Choosing a Data Representation 
 

As argued earlier, the problem of data representation is an open one. However, 

good solutions with SVM depend significantly on the representation and kernel selection. 

A simple approach to data representation is to input the entire training window to the 

SVM with the actual values of the features [7].  

 

In such an approach, a single window of size N samples is defined as 

 

[steer_angle(t0),…,steer_angle(tN-1), speed(t0),…,speed(tN-1),…] 

 

in general is equivalent to  

 

[F1(t0),…,F1(tN-1), F2(t0),…,F2(tN-1),…,FM(t0),…,FM(tN-1)] 

 

where Fx(ti) represents the value of feature Fx at time ti. Such a vector was used to train 

Relevance Vector Machines (RVM). RVM is a probabilistic sparse kernel model 

identical in functional form to the SVM [8]. Embedded in this formulation is the fact that 

temporal variations in maneuver execution are handled implicitly by RVMs. However, 

inherent functionalities of RVMs would fail to observe any dependencies or relationship 

between steer_angle(t0), steer_angle(t1), steer_angle(t2) and so on which could be critical. 

Also this formulation results in abnormally long sized input vector leading to additional 

computational complexity. 

 

An alternative approach is suggested to explicitly include some form of 

dependency/relationship measure between feature values rather than the original values. 
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As argued previously it is the change pattern in the feature values which is more critical 

than the values themselves. Variance of a feature over all the samples in the block was 

used to replace the original values of that feature.  

Variance of a feature is given by 

 

 

where N is the window size (number of samples), µx is the mean of the feature x within 

the window and xi is the feature value of the ith sample. Thus variance effectively captures 

the change in the feature values which is very critical to learn specific patterns. Variance 

of features is particularly useful in reducing the side effects of any noisy data to a good 

extent. Another reason that encouraged the use of variance is the reduced feature set that 

was used for final training which is explained in the following section.  

 

Figure 8 explains the two data representations that were experimented using 

variance. A single window of size N is shown on the left hand side of the two 

representations where each feature Fx has N values. In Data Representation I (non-

overlapping), a single window is divided into two equal halves and the variance of 

features from each half is used. Thus for every N values of a feature we obtain two values 

of variances from the first and second half of the window. The rationale for splitting a 

single window in two halves was the need to capture multiple change patterns within a 

window. For example, features like lane position or steer angle might change multiple 

times within a window but a single variance across the window will reflect only the 
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overall change. This observation resulted in several modifications that helped capture 

changes in the feature values at multiple levels.  

 

Data Representation II (overlapping) shown in the figure uses a similar structure 

with the difference that the two halves over lap with each other. A window of size N is 

divided into three equal parts say a, b, c. The first half will consist of the first two parts 

(a, b) and the second half will consist of last two parts (b, c) so that part b is common to 

both. 

  
 
 

 
Figure 8: Data Representation 

 
 

Overlapping structure was tested to account for the fact that the division of a lane 

change may not be equal and the changes may not happen always near the two ends of 
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the window. Experiments were performed with each representation and the results are 

listed at the end of this chapter. 

 

2.4.3 Choosing a Feature-set 
 

While training the SVMs it very important that only the most effective set of 

features is used. Features that display significant differences during a lane change against 

normal driving are the critical ones. Features that do not show enough predictability and 

vary randomly irrespective of a lane change should be avoided as they degrade the 

discrimination power of SVM.  

 

With no prior preference to any feature, initial experiments included all features. 

Later, only selected combinations were employed to choose the minimal feature set that 

would produce the best classification. Various combinations of features were tested. 

However, only few selected combinations generated good results. Results with these 

selected combinations are presented later in this chapter. Best classification results were 

obtained with only four features with lane positions at different distances. Such an 

outcome was expected since lane position demonstrated the most consistent pattern 

among all the other features. One can argue that steering angle should also be a strong 

candidate. However, steering angle displays similar patterns both during lane change and 

while driving through a curved road which led to high number of false positives.  

 



 

 

20

The current method of feature selection is based purely on experiments. However, 

as a future study use of more systematic stochastic techniques like t-tests, recursive 

feature elimination, and maximum likelihood test are planned.  

 
 
2.4.4 Generating Continuous Recognition  
 

An effective solution to simulate continuous recognition using discrete 

recognition is suggested. Classification label obtained for a single block (t0 – tN) would 

essentially mean that all the samples within that block can be classified under that label. 

More importantly it suggests the classification label of the last sample (tN) in the block 

since all the previous samples (t0 – tN-1) serve as history data for it. To simulate a 

continuous recognition scheme we use a moving window of size N (block-size) by one 

sample at a time across the data to obtain classification labels for each sample. The 

concept of moving window is the same as one used while training. Consistency among 

classification scores is one important advantage of this scheme. That is if the previous 

and next few samples are classified positive the probability of the current sample to be 

classified negative is very low. 

 

2.5 Results 
 
 While training the SVMs the most important factors that affected the results were 

(1) Data representation, (2) Window Size, and (3) Feature Set. Experiments were 

conducted with different configurations of each of these factors to obtain the best 

recognition system. Table 1 lists the different combinations of feature sets used. Table 2 

and Table 3 show the recognition results using data representations I and II respectively 



 

 

21

for different window sizes. The results denote the percentage of true positives detected in 

a ROC curve [28] at 1% and 5% false positive ratios. It is clear from the table that the 

recognition system is very robust and that almost all combinations produce good results 

through the two tables. The combinations that generated best results at 5% and 1% false 

positives are marked separately with red and green boxes respectively. Please note that 

although 5% false positives is our point of interest, it is interesting to note results at 1% 

also. Table 4 shows results with four different kernels using the best configuration 

obtained with. From the results it is evident that none of the kernels perform better than 

linear kernel at 5% false positives. Exponential kernel generates the best recognition at 

1% false positives. For all final comparisons linear kernel is used since it generates the 

best result at 5% false positives. Further discussion of the results can be found in Chapter 

4 where the three frameworks are compared together. 
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Table 1: SVM Feature Set 

 Features 
Set 1 Acceleration, Lane position 0, Lane position 30, Heading 
Set 2 Acceleration, Lane position 0, Lane position 30, Heading, Lead Car distance 
Set 3 Acceleration, Lane position 0, Lane Position 20, Lane position 30, Heading, 

Longitudinal acceleration, Lateral acceleration 
Set 4 Acceleration, Lane position 0, Lane position 30, Heading, Steering Angle 
Set 5 Lane position 0, Lane position 10, Lane position 20, Lane position 30 

 

 

 

Table 2: Percentage Detected at 1 and 5 % False Positives (non-Overlapping) 

 Set 1 Set 2 Set 3 Set 4 Set 5 

Win Size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP

5 sec 50.17 83.53 50.28 90.03 50.29 91.16 50.12 89.96 54.87 91.13 
4 sec 37.37 88.10 36.73 91.30 41.62 92.50 38.99 91.50 48.92 92.20 
2 sec 50.13 89.30 50.33 93.00 53.30 97.70 44.71 94.00 55.22 97.40 
1.5 sec 38.75 85.20 38.66 93.70 45.03 96.30 31.71 93.20 53.30 97.70 
1.2 sec 59.46 96.83 59.51 96.00 58.90 96.00 58.42 96.05 67.48 96.70 

0.8 sec 37.89 86.28 29.01 91.83 46.20 90.00 38.23 86.62 56.79 94.57 

 
 
 

Table 3: Percentage Detected at 1 and 5 % False Positives (Overlapping) 

 Set 1 Set 2 Set 3 Set 4 Set 5 

Win Size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP

5 sec 47.85 87.1 47.95 86.93 48.89 89.00 49.23 88.07 49.58 87.77 
4 sec 47.82 89.92 47.91 90.70 49.06 91.50 47.02 89.50 54.05 91.06 
2 sec 56.26 96.20 54.60 96.16 58.12 97.90 49.20 95.79 61.20 97.32 
1.5 sec 50.13 94.52 49.77 94.56 53.30 97.56 43.75 93.28 55.22 97.50 

1.2 sec 39.25 93.79 38.77 93.70 45.03 95.00 31.71 93.20 53.07 97.94 

0.8 sec 58.99 97.00 59.69 95.50 58.90 96.00 57.82 96.42 67.48 96.70 
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Table 4: Final Results with Different Kernels 

 Linear Polynomial Exponential Gaussian 

@1% @5% @1% @5% @1% @5% @1% @5% 1.2s, Set 5, 
Overlapping 

53.07 97.94 58.12 97.94 69.40 97.17 51.08 97.40 

 
 
 
2.6 Software Package for SVM 
 

The WinSVM software available at www.kernel-machines.org was used for the 

purpose of my experiments with SVMs. It is windows version called the ‘SVM–light’        

( http://svmlight.joachims.org/ ). The software offers an easy interface to use SVMs on a 

Windows platform. It also allows use of different kernel functions including a user 

defined kernel function. Further details on the software application package and the 

details on how to use it are described in detail in the Appendix.  
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3. Hidden Markov Model Recognition 
 

Previous studies have shown that human behavior can be observed as a sequence 

of internal ‘mental’ states each with its own particular behavior and transition 

probabilities [22]. In case of driving, driver maneuvers like lane changing, turns, driving 

through a curved road etc can be seen as a sequence of internal mental states. For 

example a lane change can consists of following steps (1) a preparatory action centering 

the car in the current lane, (2) looking around to make sure the adjacent lane is clear, (3) 

steering to initiate the lane change, (4) the change itself, (5) steering to terminate the lane 

change, (6) a final re-centering of the car in the new lane. However, it is also observed 

that the internal states within the human mind are not directly observable and thus they 

must be determined by using some indirect estimation process. Hidden Markov model 

(HMM) is a superior method for recognizing temporal data patterns that can be expressed 

as stochastic transitions among finite discrete states.  

 

This section reviews the second machine learning technique for detecting driver 

intentions. Hidden Markov Models (HMMs) have received burgeoning attention in the 

past few decades as a rich tool for modeling real-world signals. Its chief application is in 

machine recognition of speech. 
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3.1 Brief Introduction to HMM 
 

Hidden Markov models represent an extension of simple, or observable, Markov 

models. A simple Markov model has three components: a set of states, an observation 

(i.e., physical event) associated with each state, and a set of transition probabilities 

between states. The model represents “fully observable” Markov processes in that there is 

a direct and obvious mapping between observations and states. HMMs extend Markov 

models by allowing each state to produce different observations according to 

probabilistic distributions. HMMs thus represent “hidden” Markov processes in that there 

may be numerous mappings between observations and states – that is, the state sequence 

is “hidden” from observation.  

 

The basic three problems of the HMMs are as follows 

1. Evaluation: Given a model and a sequence of observations, compute the probability 

that the observed sequence was produced by the model.  

2. Decoding: Given the sequence of observations and model, determine the hidden 

sequence of states that is optimal in some meaningful sense. 

3. Estimation: Given the sequence of observations and a model, adjust the model 

parameters so that the probability of current observation sequence given the model is the 

maximum. 

 

Formal mathematical solution exists for each of these problems for HMMs, 

details of which can be obtained in [11]. Previous studies have found that driver behavior 

can be characterized as sequence of basic actions each associated with a particular state 
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of the driver-vehicle-environment [22]. Given sufficient training sequences, ‘estimation’ 

can be used to train model parameters adequately. Trained models can then use 

‘decoding’ to determine the hidden sequence of states that corresponds to a particular 

driver behavior. 

 

3.2 Motivation 
 

There are two main motivations to use hidden markov models for the task at hand. 

First, HMM support recognition of temporal data patterns. This is particularly useful 

because humans perform different actions on a variable time-scale. Even within a lane 

change the internal states may vary in time. HMM provide an excellent framework for 

such temporal mappings. Second, human actions can be observed as some sequence of 

internal ‘mental’ states. However, this sequence is hidden. HMM can be trained to 

recognize this hidden sequence of states.  

 

3.3 Developing HMM-based Recognition System 
 
3.3.1 Choosing the HMM Structure 
 

One of the issues in training HMM is selecting the right kind of HMM. Studies 

have shown that driving maneuvers like lane change often consists of a definite sequence 

of states. The time length for each internal state is unknown. This has encouraged the use 

of Left-right HMMs in previous studies [14, 22]. For consistency with previous work a 

similar structure was used in this work. Figure 9 below shows a left-right HMM. In such 

an HMM type, the model either can stay in a particular state or transition to the next state 

in the forward direction. The model can not skip states or transition to any state in the 

backward direction. 
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P11 P22 P33

 
Figure 9: A Left-Right HMM 

 
 
 
The data used for experimentation is the same that was used for training the support 

vector machines. The definition of lane change as explained under Section 1.2.1 was used 

for HMM system.  

 
 
3.3.2 Analogy from Speech Recognition 
 

The task of driving is seen analogous to speech. Different actions within the task 

of driving correspond to different words used in speech. The particular actions we are 

interested include (1) lane change and (2) lane keeping. In the domain of speech 

recognition words are considered as consisting of a sequence of sub-words or phonemes. 

For example the word ‘cream’ can be observed as a sequence of following phonemes, 

 

‘cream’  k - r - iy - m 
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 Lane change or lane keeping as already studied is a sequence of internal mental states. 

This analogy works well to match the temporal variations in the driving data and 

sequential nature of the internal states. 

 

3.3.3 Training HMM for LC and LK 
 

Following the analogy with speech recognition the HMM system was constructed 

to train three kinds of words. These are list in the table below. 

 

 

 

To achieve recognition on a more continuous scale, each of the above words 

(LCL, LCR, and LK) were broken down into 2 or 3 smaller sub-words or phonemes. 

Each of these sub-words consists of 3 states each. Thus the recognition is performed not 

at a word-level but at a sub-word level. This also requires that we have a separate HMM 

for each of the sub-word instead of having a single HMM for one complete word. Figure 

10 below shows the configuration corresponding to a lane change left (LCL) word with 

structure I. The structure is similar for other words. Note that the use of this structure is 

inspired by a similar sub-HMM structure used by Kuge et al. (2000). Experiments were 

performed with both structure styles and results are presented at the end of the chapter. 

 Table 5: Word Dictionary and Structures 

Words Structure I (2 sub-words) Structure II (3 sub-words) 

1. Lane Change Left (LCL) lcl1 – lcl2  lcl1 – lcl2 – lcl3 

2. Lane Change Right(LCR) lcr1 – lcr2  lcr1 – lcr2 – lcr3 

3. Lane Keep (LK) lk1 – lk2  lk1 – lk2 – lk3 
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Figure 10: Configuration of ‘LCL’ Word (using Structure II) 

 
 
 

To train HMM for a lane change (LCL/LCR) all the positive samples from the 

start of a lane to the end are input. Figure 11 below shows the window that constitutes a 

lane change training example. For training the SVMs a constant block size was used for 

all instances irrespective of their original sizes. However HMMs provide built-in support 

for temporal variations allowing variable block sizes. 

 
 
 

 
Figure 11: Training Windows for LC/LK 

LCL

lcl1 lcl2 lcl3

1 2 3 1 2 3

1 2 3

‘LK’ ‘LCL’ 
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Some extremely rapid and/or degenerate instances of lane change resulted in very 

small size windows, smaller than the number of states in HMM. These can be referred to 

as abrupt lane changes. For such cases, the LC windows were padded with immediately 

preceding LK samples so that the total window size equals the number of states in the 

HMM. The block size should be at least as large as number of states because the HMMs 

are left-right HMMs with each state having transition to itself or the next state, thus at 

least one sample is required for each state. The LK training instances are not bounded by 

hard boundaries like LC instances and therefore are trained with constant block size. The 

window size for LK instances is a free parameter and experiments with different LK 

window sizes were performed to obtain the best value. Results with different LK window 

sizes are mentioned at the end of this section. 

 

3.3.4 Choosing the Feature Set 
 

One of the motivations to use probabilistic state machines like HMM was to 

capture temporally variant patterns in features like steering and acceleration. However it 

was possible that other features might also display patterns or dependency relation with 

other features. To identify the best set of features experiments were done with a set of 

most important features. Different combinations were experimented to reveal the most 

promising set of features. Results with different feature sets are listed in the concluding 

sections of this chapter. In future, systematic statistical tests need to be done for feature 

reduction.  
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3.4 Recognition 
 

Once the sub-word HMMs are adequately trained using the training examples the 

recognition is a simple. We use a moving window of 7 seconds to generate what we call 

as ‘test sentence’ from our analogy to speech recognition. Figure 12 below shows the 

window that corresponds to a ‘sentence’. This is a large window of samples from the data 

stream. If for a given test sentence the last sample is a lane change sample the sentence is 

labeled as lane change. HMM uses decoding to determine the hidden sequence of states 

or words with the highest probability.  

 
 
 

 
Figure 12: Input Test Sentence 

 
 
 
The classification output for a sentence could be either a single word or a sequence 

multiple words. The last word in a sequence is considered as the classification output for 

the entire window.  

 

 

 

sentence 
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For example, an output for a test sentence can be  

 

sentence = ‘LK’ + ‘LCL’ 

 

Such an output indicates that the model detected a sequence of two actions ‘lane 

keeping’ and ‘lane change left’ in that order. The last word in this sequence is important 

and signifies the overall classification label for the window. If the window was a lane 

change window and the last word was either ‘LCL’ or ‘LCR’, we conclude that the 

driver’s intention is inferred correctly.  

 

3.5 Results 

Training experiments were conducted with different sub-word structures, sizes for 

LK window and features. Table 7 and Table 8 show results with different combinations 

that were tested. Table 6 lists the different combinations of features used. Set 1 consisting 

of lane position values generated the best results for SVM. Set 2 consists of all lane 

positions and critical lateral features (heading, lateral acceleration, steering angle). Set 3 

was configured by adding longitudinal features (speed, longitudinal acceleration) to Set 

1. Set 4 finally had both lateral and longitudinal features along with lane positions. The 

configurations that generated the best results at 1% and 5% false positives are marked in 

green and red respectively. Note that Set 2, with a 2 second window worked best for 5% 

false positives while Set 4 with additional longitudinal features worked best at 1% false 

positive. Further discussion of the results is in the comparative study between different 

recognition frameworks. 
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Table 7: Percentage Detected at 1 and 5 % False Positives (HMM Structure I) 

 Set 1 Set 2 Set 3 Set 4 

LK size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 

1.5 sec 40.52 67.84 35.17 75.10 41.86 66.25 37.26 73.52 

2 sec 40.43 68.25 24.64 80.20 40.69 66.83 29.66 77.53 

5 sec 41.85 66.92 41.35 75.02 43.44 66.00 43.80 73.77 

 
 
 

Table 8: Percentage Detected at 1 and 5 % False Positives (HMM Structure II) 

 Set 1 Set 2 Set 3 Set 4 

LK size 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 1%FP 5%FP 

1.5 sec 47.02 63.58 43.19 72.43 47.20 62.32 47.54 70.93 

2 sec 48.04 64.33 31.83 78.61 47.12 62.82 38.93 74.77 

5 sec 49.02 63.83 50.31 69.51 47.95 61.24 51.96 68.84 

 
 
 
 
 
 
 
 
 
 

Table 6: HMM Feature Set 
 Features 

Set 1 Lane position 0, Lane position 10, Lane position 20, Lane position 30 
Set 2 Lane position 0, Lane position 10, Lane position 20, Lane position 30,  

Heading,  Lateral Acceleration, Steering Angle 
Set 3 Lateral Acceleration,  Lane position 0, Lane position 10, Lane position 20, 

Lane position 30, Speed, Longitudinal Acceleration 
Set 4 Lane position 0, Lane position 10, Lane position 20, Lane position 30, 

Heading, Lateral Acceleration, Steering Angle, Speed, Longitudinal 
Acceleration 
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3.6 HTK - Development tool 
 

To develop this HMM-based recognition system, the HTK toolkit was used [12]. 

HTK provides an interface for speech recognition system and also facilitates USER/non-

speech data files. Thus HTK could be used to develop HMM-based system for lane 

change detection. For details on the use of HTK please refer HTK manual available at 

[12] and Appendix. 
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4. Results and Comparative Study 
 

This section compares the results of the two machine learning frameworks 

mentioned in this thesis with an existing one known as ‘Mind-Tracker’ [9, 10]. The mind-

tracker was originally designed in a cognitive architecture called ACT-R to model and 

predict driver behaviors. Figure 13 below demonstrates the overall functioning of the 

Mind-Tracking system. The basic idea is to run many driver models in parallel each 

having its own intention about what to do next. The intention could be to change lane, 

take a turn, maintain in a lane etc. All these models are matched with the human model 

currently driving the car and the best matching model predicts driver behavior. For details 

on the Mind-tracking system readers are encouraged to refer to [9, 10].  
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Figure 13: Mind-Tracker Overview 
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4.1 ROC curves 
 

The mind tracking system uses the same data set as SVM and HMM in this thesis, 

which makes these comparisons possible. Figure 14 presents the ROC curves for a 

sample by sample recognition output from the three different frameworks. An ROC curve 

plots the true positives (Y-axis) against the false positives (X-axis). Perfect recognition 

would pull the curve through the point (0, 1).  
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Figure 14: ROC Curves for the 3 Frameworks 

 
 
 
The ROC curves clearly demonstrate the superiority of SVM recognition against the 

other two. At 5% false positives SVM generate a sample by sample accuracy of more 
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than 97% against 80% for the HMMs and 74% for the Mind tracker. This means that 

97% of all the lane change samples were correctly detected by SVM while only 5% of the 

LK samples were detected as LC incorrectly. Experiments have shown that false alarm 

tolerance rate for human being is just about 5% and therefore the results are compared at 

that point.  

 

4.2 Time Elapsed 
 

Another way of looking at the recognition results is over time. Time is critical for 

these predictions and the sooner they predict lane changes the better is the system.  

 
 
 

0
10
20
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Elapsed Time

Pe
rc

en
ta

ge
 D

et
ec

te
d

SVM HMM MindTracker

2 sec1.5 sec1 sec0.5 sec0 sec

0
10
20
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Elapsed Time

Pe
rc

en
ta

ge
 D

et
ec

te
d

SVM HMM MindTracker

2 sec1.5 sec1 sec0.5 sec0 sec

 
Figure 15: Time Elapsed Chart 
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Figure 15 show charts to demonstrate the time taken for each framework to detect 

a lane change. The time is calculated from the start of a lane change until the first sample 

in LC instance is detected positive Both HMMs and SVMs are consistent in their 

predictions which allow the assumption that once a sample is detected positive in an 

instance all the following samples are detected positive. 

 
The above figure shows that SVM can correctly predict more than 85% of the 

lane change instances in less than 0.5 seconds (0.3 seconds) after the lane change starts. 

Both HMM and the mind tracking system detect about 72% and 62% respectively. Thus 

we conclude that SVM architecture is successful in inferring driver intentions very early 

in time. We note that at 1 sec both HMM and SVM produce 85% correctness against 

78% percent for Mind-tracker. 

 

4.3 Lateral Movement 
 

A third way to analyze the results is to compute how much distance does the 

vehicle travel laterally before the lane change is detected. The lateral distance traveled by 

the car is calculated relative to the point where the lane change starts. Figure 16 shows 

comparative analysis for all three techniques. 
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Figure 16: Lateral Movement Chart 

 
 
 
SVM, HMM and Mind tracking system detects about 85% of the lane change instances 

before the car laterally moves 1/4 of the lane. In case of SVM we observe that it achieves 

about 86% accuracy even before the car moves 1/8 of the lane laterally. HMM prediction 

begins with a low accuracy initially but performs well at 1/4 of the lane and remains 

constant there after. 
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The following charts show comparative results from the three frameworks at essential 

points of comparison. On a sample by sample recognition scale the three frameworks are 

compared at 1% and 5% false positive rates. For the other two charts, the comparison is 

made for the percentage of instances correctly predicted at different time and lateral 

distances by each method. These results suggest that SVMs perform best as compared to 

the other two frameworks.  
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Figure 17: ROC Comparison Chart 
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Time Elapsed chart
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Figure 18: Time Elapsed Chart 
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Figure 19: Lateral Movement Chart 
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5. Graph theory based Lane Change Detection 
 

5.1 Introduction 
 

The remaining section of the thesis presents a brief overview of the graph-based 

theoretic formulation of detecting lane change. This technique has only been partially 

explored and therefore has a special place at the end of the thesis. 

 

Given the different features for a driving scenario like speed, acceleration, 

steering angle, etc. we study the correlation among these features during a lane change. A 

layered graph, with each layer having n nodes (n is the number of features) can be 

constructed.  The edges in the graph go from one layer to the next and their weights 

represent the degree of correlation. Upon obtaining  reference  graphs for typical  lane 

change  instances we  propose to  match the  input graphs with these reference  graphs 

using efficient  matching techniques. 

 

The problem of lane change (LC) detection could prove vital for issues of driver 

security. Most algorithms used until now use the original form of data and try to study 

specific trends in the features over the interval of lane change instance. However none of 

the earlier algorithms used the fact that the dependency between two features could be 

significant.  Two features could be correlated positively or negatively. Our  approach 

utilizes  the fact  that some pairs  of  features display  strong  dependencies  between each  

other during lane  changes, a  situation that does  not occur  during normal lane keeping 

(LK). More efficient and robust matching algorithms can take care of noise factor and 

time invariance of a lane change instance. 
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5.2 Overview of the Technique 
 
5.2.1 From Continuous Stream of Data to Correlation Matrices 
 

The input data is a continuous stream of values of the different features sampled 

at the rate of 10 samples per second. Depending on the  maximum and  minimum  limits 

of  these features  we normalize   each  single   value  between   [0,1].    The  correlation 

coefficients  between any  pair of  features is  computed  using these normalized values  

over a period  of time. After  studying the experimental data, it  was observed  that a  time 

frame  of 2 seconds would  capture the  dependency structure between  the features most  

efficiently with  minimal effect  of  noise in  the data.   Next significant  change, if  any,  

in the  dependency  structure was  best observed  at a  shift  of 1/2  second. Figure 20 

shows the construction of   first two correlation matrices from continuously varying 

samples of data. The correlation coefficient CC[X, Y] between two features X and Y can 

be computed as follows 

 

where, 

cov [X, Y] = covariance between feature X and Y, 

σX = standard deviation of feature X, 

σY = standard deviation of feature Y. 

 

The values of CC[X, Y] lie between [-1, 1]. A negative correlation coefficient 

represents that when one feature increases, the other decreases while a positive 
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correlation coefficient represents change in the same direction. Thus given values of 

these features over a given period of time we can compute the correlation matrix. 

 
 
 

 
Figure 20: Continuous Stream to Matrices 

 
 
 
5.2.2 From Correlation Matrices to Graphs 

A single correlation matrix will represent one layer in the graph as shown in 

Figure 21. An edge from node X of one layer to node Y of the other will have a weight 

given by the CC [X, Y].  Next layer in the graph is built from the second correlation 

matrix obtained with a shift of 1/2 second from the previous window.  Note that the 

correlation matrix is symmetric i.e. CC[X, Y] = CC[Y, X]. Therefore we consider only 

the upper triangle of the matrix resulting in only downward pointing edges in the graph. 
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Thus progressively we can compute layers of our graph by shifting window by 1/2 

second and calculating the correlation matrices. 

 
 
 

 
Figure 21: Matrix to Graphs 

 
 
 
5.2.3 Construction of the Database 

We need to construct reference graphs that would represent a typical lane change. 

We could classify all the instances of lane change into few patterns based on the direction 

of turn (say, left-to-right or vice versa), distance of lead car, acceleration etc.  For 

example, one sample pattern- say pattern ρ - would be change of lane from left to right 

when the car/truck in the front is going slow and the right lane is faster. The driver tends 

to accelerate to catch up with the speed in the right lane, close in with the slow car/truck 

in the front and then drift towards the other lane. Another example would be the case 
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when both lanes are equally fast but driver needs to change lane to take either a 

turn/exit/merge. Each such pattern would have a reference graph in our database. 

 

A lane change would last for about 4 to 5 seconds maximum from the time when 

the driver starts his final drift towards the other lane until he crosses the lane. To 

construct a reference graph for a particular pattern of lane change last 4.5 seconds of data 

before a lane change was observed. 4.5 seconds of data with a window size of 2 seconds 

per layer and shift of 1/2 second for the next layer would give us 7 layers in the reference 

graph. Figure 22 shows the construction of reference graph of a pattern ρ from all the 

instances of that pattern found in the experimental data. To calculate an average 

correlation matrix for a layer we list together corresponding windows from all the 

instances of pattern ρ to give a single window. The correlation matrix derived from this 

window would represent a corresponding layer in the reference graph. Thus, this layer so 

obtained is representative of all the instances of that pattern of lane change. The 

dependencies so obtained between features would be typical of pattern ρ. Figure 22 

shows construction of first two layers of the graph. 
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Figure 22: Construction of Database 

 
 
 
5.2.4 Simple Graph-Matching Algorithm 

Figure 23 shows the general lane change detection strategy. Input graph is 

matched against pre-stored database of graphs using matching and data mining 

techniques to differentiate between LK and LC. 
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Figure 23: Matching and Data Mining Strategies 

 
 
 

A simple matching algorithm between two graphs maintains all the edges between 

two layers irrespective of their weights and performs a one-to-one match between edges. 

A total of n features would give us n*(n-1)/2   edges going from one layer to the other.  In 

a complete reference graph (all 7 layers) with no edges removed let m be the total number 

of edges. We compare weights between corresponding edges. Figure 24 shows the simple 

matching algorithm. Let CCI[X, Y] be the weight of edge[X, Y] in input graph and let 

CCR[X, Y] be the weight of edge[X, Y] in reference graph. We compute the degree of 

matching between these two edges as follows 

Degree of matching = 0 if CCI[X, Y]*CCR[X, Y] < 0 

          = 1 Otherwise 
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Upon adding the degree of matching for each edge in a graph we get the degree of 

matching between two graphs by summing up for all the edges in the graph. This will be 

some value less than m. More than 70 percent matching i.e. if degree of matching 

between graphs >=0.7*m we would typically predict a possible lane change ahead in the 

input data. 

 
 
 

 
Figure 24: Degree of Matching 
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5.3 Results 
 

The input car data were provided by Nissan Motor Co., Ltd. The different features 

that were used for analysis were accelerator pedal pressure, acceleration, lead car 

distance, steering angle, steering torque, yaw-rate, car's longitudinal acceleration, 

heading, lateral position at 0 distance, lateral position at 30m, lateral acceleration, and 

steering angle velocity. 

 

Our database consists only 4 reference graphs of very frequently observed 

patterns.  Every input graph would be compared with each of these 4 reference graphs 

and a degree of matching was obtained against each reference graph individually. A 

typical input file would be a continuous stream of data consisting of instances of both LC 

and LK for a car over a sufficiently long period of time. The matching program would 

generate a 7-layered input graph for every interval of 4.5 seconds. The next input graph 

from the file would be obtained by a shift of 1/2 second interval. Essentially 4 seconds of 

data from the previous graph is reused. Thus a continuous stream of input graphs is fed 

into the matching program and input graphs with degree of matching higher than certain 

cutoff were screened and noted down. 

 

Table 9 shows the percentage of success/failure in predicting lane changes with 

different cutoffs. More and more experiments on the input data indicated that the 

reference graphs constructed were more representative of LC patterns in general than any 

pattern in particular. 
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Table 9: Results with Graph Technique 

CUTOFF   % LC instances 
correctly 
detected (%) 

LC patterns 
correctly  
detected (%) 

LC instances 
falsely  
detected (%) 

65 75 20 11 

70 60 12 1.2 

75 22 6 0.001 

 
 
 

At this point, we cannot compare the graph-based algorithm to the other three 

frameworks. This is mainly because the algorithm does not produce continuous 

recognition. Also the technique has only been partially explored and uses an oversimplified 

graph-matching algorithm. A continuous output can be produced by a sliding the window 

by one sample at a time. However, robust techniques such as those mentioned in the future 

work are required to build a promising recognition system. 
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6. General Discussion 
 

As observed from the comparative analysis of the three different frameworks, it is 

evident that both SVM-based and HMM-based learning methods are successful in 

predicting driver actions. Both these techniques produce better results than the existing 

Mind tracking system in most aspects. The two frameworks have capabilities to produce 

continuous recognition on a sample by sample basis. Also as far as recognition is 

concerned, it occurs in real time in both these frameworks. The HMM-based technique 

does better in terms of early prediction when compared to the mind-tracking system. 

However the mind-tracking system does better when compared over lateral movement.  

 

The SVM framework proved very effective because of high sample by sample 

prediction rate which is highly desired in a real time scenario. Results show a significant 

23% better prediction accuracy compared to the mind tracking system. SVM have also 

demonstrated excellent accuracy in terms of early prediction with respect to both time 

and distance. More than 85% of the lane change intentions were detected in less than 0.3 

seconds after the driver initiates his action. Thus it can be concluded that the SVM based 

framework not only offers accurate recognition capabilities for driver’s intentions but 

also assures highly reliable prediction rate. Such a framework can improve the 

performance of a driver support system due to its early prediction. 

 
Although the SVM recognition system has demonstrated good capabilities for 

early recognition the technique can be improved for robustness. Future work on the 

framework aims at stochastic techniques for feature selection such as t-test, maximum 

likelihood test or feature elimination method [21]. Such methods will offer a better 
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understanding to select the right feature set. Selecting the optimal feature set will enhance 

performance of both HMM and SVM recognition. In addition, systematic kernel 

estimation techniques need to be employed for to explore the best kernel space. Recent 

work on kernel estimation [18] suggests the use of semi-definite programming to estimate 

the right kernel. Complex binary search techniques can be applied to find the optimal 

variance pattern within a temporal window of lane change. This will allow the system to 

capture multiple patterns within the window more effectively. 

 
The graph matching algorithm explained is oversimplified and is vulnerable to 

erroneous matching. Not every feature is dependent on every other to the same extent. It 

might be the case that two features are completely independent resulting in no edge 

between them while some features may have strong dependency between them. Weights 

of edges between two independent nodes (features) might match coincidently adding to 

the degree of matching. Some simple modifications that would promise better results are 

as follows 

• Deleting edges with weights close to zero. 

• Classifying LC patterns more precisely and augmenting reference graphs in the 

database. 

• Augmenting the database with reference graphs for LK instances and eliminate input 

graphs similar to LK patterns. 

• Applying scaling factor to degree of matching between edges. Some edge weights in 

the reference graph display high contrasts between LC and LK instances. We might 

multiply degree of matching with a suitable scale to represent the contrast. 

 



 

 

54

We intend to use more robust algorithms that might use the topology of the graph 

to find a match. Edge-wise matching for large database could be time consuming. 

Indexing on the graphs using different signatures like eigen-values of the incidency 

matrix or carter pillar-dimension could prove really significant. Robust graph matching 

algorithms like bipartite graph matching and edit-distance based matching could also be 

applied.  

 

 SVM and HMM have been independently successful in detecting driver intentions 

however a combination of the two frameworks may have a better answer. HMM is good 

at mapping temporal variations and SVM offer a powerful sample by sample prediction 

accuracy. A combined recognition system that can inherit the merits of these two 

frameworks may prove useful. 

 

 A fuller range of driver behaviors like turns, stops, parking etc. can be tested on 

the same frameworks to observe the recognition capabilities. The frameworks have 

proved very effective for the lane change intentions and may have a solution of other 

intentions too.  

 

Driver safety is a critical issue and for the same reason inferring driver intentions 

is proving to be critically important. Machine learning techniques like those presented in 

this thesis have shown remarkable potential for very early and reliable prediction of 

driver intentions. Application of such techniques in real world automobiles will definitely 

take the issue of driver security to the next level of assurance. 
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APPENDIX A 
 

Table 10: Complete Feature Set 

Feature Description 
Brake Pressure Brake Pressure 
BrakeSW Brake SW 
Curvature0 Road Curvature (radians) 
Distance Lead Car Distance (meters) 
Heading0 Heading 
laneDetectFail Lane Detection Failure  
LatG Lateral Acceleration 
Lane Position  0 Lane Position at 0 meter 
Lane Position 10 Lane Position at 10 meters ahead 
Lane Position 20 Lane Position at 20 meters ahead 
Lane Position 30 Lane Position at 30 meters ahead 
lcFlag Lane Change flag 
lcLeftRight Lane Change Signal – Left or Right 
lcPattern Lane Change Pattern 
lonAccel Longitudinal Acceleration 
Speed Speed 
Steering Angle Steering Angle 
Steer Rate Steering Rate 
Steer Torque Steering Torque 
TurnSigLeft Turn Signal Left 
TurnSigRight Turn Signal Right 
Vr Steering Angle Velocity 
Yaw rate Yaw Rate 

 
 
 
Please note that acceleration mentioned in the thesis can be easily derived from speed 
feature. The simple definition used here is as follows, 
 

acceleration (t1) = speed(t1) – speed(t0) 
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1. Using WinSVM 
 

The WinSVM software available at www.kernel-machines.org was used for the 

purpose of my experiments with SVMs. The software offers an easy interface to use 

SVMs on a Windows platform.  

 

WinSVM offers easy interface to both train SVMs and test them for binary 

classification schemes. Also it offers easy interface to change between different kernels 

like linear, polynomial etc. Each training sample consists of a vector of features. A 

training/testing file given as input to the WinSVM software has the following grammar 

and includes one sample per line of the file. 

 

<class> .=. +1 | -1 | 0  

<feature> .=. integer  

<value> .=. real  

<line> .=. <class> <feature>:<value> <feature>:<value> ... <feature>:<value> 

 

The class label and each of the feature/value pairs are separated by a space 

character. Feature/value pairs MUST be ordered by increasing feature number. Features 

with value zero can be skipped. The +1 as class label marks a positive example, -1 a 

negative example respectively. A class label of 0 indicates that this example should be 

classified using transduction. The predictions for the examples classified by transduction 

are written to the file specified through the -l option. The order of the predictions is the 

same as in the training data.  
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In my experiments I use class labels with values +1 and -1, where +1 denotes a 

lane change (LC) sample and -1 denotes a lane keeping (LK) sample. Upon successfully 

training the SVMs, WinSVM gives out a model file (*.mdl) that stores in the values of 

the support vectors and other metadata like the number of training examples (both 

positive and negative), type of kernel used , kernel parameters if any. 

 

This model file is used for recognition when test files are given as input. The 

recognition results are output in a results file (*.rsl). The results file contains the 

recognition output of one test sample per line. Each line consists of the distance of that 

test point from the hyperplane and the sign indicates whether that sample was classified 

as positive or negative. A negative sign indicates that it was classified as a LK sample 

and vice versa for positive sign. Thus higher the absolute value of the distance indicates 

higher confidence to predict class labels.  
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2. HTK Development tool  
 
To develop the HMM-based recognition system, the Entropic’s HTK toolkit was used. 

HTK provides an easy interface for speech recognition system but at the same time 

facilitates USER/non-speech data files. Thus HTK could be used to develop HMM-based 

system for lane change detection. 

 

The current work uses HERest and HVite tools from the HTK tool kit. For details on the 

operation of these tools users are requested to refer to the HTK manual available on the 

official HTK website [12]. 

Steps in Training and Recognition: (may not include in actual thesis) 

1. Creating raw HMM definition files that defines the number of the states in the 

HMM, size of the data stream per state, type of HMM (left-right etc) 

2. Processing raw data files to select the LC and LK training instances into separate 

files (LK*.out & LC*.out) 

3. Creating label/transition files (LK*.lab & LC*.lab) for each of the training 

instances.  

4. Converting the text files created in step 2, 3 into binary format using MATLAB 

code. HTK recognizes only binary format for input training files. 

5. Training HMM parameters within the definition files using all the training 

examples to estimate mean, variances and transition probabilities [HERest]. 

6. Creating test files using steps 2, 3 & 4 into binary format required by HTK. 

7. Decoding test samples using the HMMs [HVite] 
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8. Analyzing the results by calculating the LC score from the log probabilities and 

plotting ROC curve.  

 

   LC Score is calculated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 




