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Abstract

In emerging high-speed integrated-services packet-switched networks, fair packet schedul-
ing algorithms in switches and routers will play a critical role in providing the Quality-of-
Service (QoS) guarantees required by real-time applications. Elastic Round Robin (ERR),
a recently proposed scheduling discipline, is very efficient with an O(1) work complexity.
In addition, it has superior fairness and delay characteristics in comparison to other algo-
rithms of equivalent efficiency. However, since ERR is inherently a round robin scheduling
algorithm, it suffers from the limitations of all round robin schedulers such as (i) bursty
transmission and (ii) the inability of the flows lagging in service to receive precedence
over the flows that have received excess service. Recently, Tsao and Lin have proposed a
new scheme, Pre-order Deficit Round Robin, which tries to eliminate the problems associ-
ated with the round robin service order of Deficit Round Robin (DRR). In this report, we
present a new scheduling discipline called Prioritized Elastic Round Robin (PERR), based
on a similar principle as Pre-order DRR but in a modified and improved form, which over-
comes the limitations of ERR. We derive an upper bound on the latency achieved by PERR
using a novel technique based on interpreting the scheduling algorithm as an instance of a
nested version of ERR. Our analytical results show that PERR has better fairness character-
istics and a significantly lower latency bound in comparison to other scheduling disciplines
of equivalent work complexity such as DRR, ERR and Pre-order DRR. We further present
simulation results, using both synthetic and real traffic traces, which illustrate the improved
performance characteristics of PERR.
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1 Introduction

The Internet traffic today is increasingly dominated by new real-time multimedia
applications such as audio/video-on-demand, IP telephony, and multimedia tele-
conferencing, all of which prefer some guarantee of an acceptable quality of service
(QoS) in the transmission and delivery of data. These different applications have
varying traffic characteristics with different requirements, and rely on the ability of
the network to provide QoS guarantees with respect to several quality measures,
such as end-to-end delay, bandwidth allocation, delay jitter, and packet loss. This
requires a scalable QoS mechanism to efficiently apportion, allocate and manage
limited network resources among competing users. Fair, efficient and low-latency
packet scheduling algorithms used at the output links of switches and routers form
an important component of such a mechanism [1]. Fair scheduling becomes espe-
cially critical in access networks, within metropolitan area networks and in wireless
networks where the resource capacity constraints tend to be significantly limiting
to high-bandwidth multimedia applications today. Even with the over-provisioning
of resources such as is typical in the Internet core, fairness in scheduling is essen-
tial to protect flows from other misbehaving flows triggered by deliberate misuse
or malfunctioning software on routers or end-systems. Fairness in the management
of resources is also helpful in countering certain kinds of denial-of-service attacks.
Fair schedulers have now found widespread implementation in switches and Inter-
net routers [2,3].

Given multiple packets awaiting transmission through an output link, the function
of a packet scheduler is to determine the exact sequence in which these packets will
be transmitted through the link. Desirable properties of a packet scheduler include:

• Fairness in bandwidth allocation:This characteristic of a scheduler is most fre-
quently judged based on the max-min notion of fairness [1,4].

• Low latency:An appropriate measure of packet schedulers in this regard, espe-
cially for schedulers seeking to provide guaranteed services, is the upper bound
on the length of time it takes a new flow to begin receiving service at the guar-
anteed rate [5].

• Low implementation complexity:A per-packet work complexity ofO(1) with
respect to the number of flows is considered most desirable for ease of imple-
mentation, especially in hardware switches.

Often, there is a conflict between a simple and efficient implementation on the one
hand and low latency and fairness on the other. In this report, we present a new
scheduling discipline calledPrioritized Elastic Round Robin (PERR)with a work
complexity ofO(1) with respect to the number of flows and with better fairness
and latency characteristics than other known schedulers of equivalent complexity.
In addition, these characteristics of PERR are comparable to those of significantly
more complex schedulers such as WFQ. In this report, we present analytical proofs
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of these characteristics of PERR. Further, using real gateway traffic traces, and
based on a new measure of fairness borrowed from the field of economics, we
present simulation results that demonstrate the improved fairness characteristics of
PERR.

1.1 Related Work and Motivation

Fair schedulers—those discussed in the research literature as well as those currently
implemented in switches and routers—are often based on themax-minnotion of
fairness [1, 4], a strategy for apportioning a shared resource among multiple re-
questing entities. The central idea of the max-min strategy is that no entity receives
a share of the resource larger than its demand and that entities with unsatisfied
demands receive equal shares of the resource. The Generalized Processor Sharing
(GPS) [6] is an ideal but unimplementable scheduler that assumes fluid flow traffic
to exactly satisfy the above classical notion of fairness.

Over the last several years, a large number of different packet-based scheduling
algorithms have been proposed with an aim to approximate the GPS scheduler.
These algorithms can be broadly classified into the following two categories—
sorted-priority schedulers and frame-based schedulers. Sorted-priority schedulers
maintain a global variable known as the virtual time or the system potential func-
tion. A timestamp corresponding to each packet is computed based on this vari-
able, and packets are scheduled in increasing order of their timestamps. Exam-
ples of sorted-priority schedulers are Weighted Fair Queueing (WFQ) [6, 7], Self-
Clocked Fair Queueing (SCFQ) [8], Start-Time Fair Queueing (SFQ) [9], Frame-
based Fair Queueing2 (FFQ) [10] and Worst-Case Fair Weighted Fair Queueing
(WF2Q) [11]. The sorted-priority schedulers primarily differ in the manner in which
they compute the global virtual time function. They generally provide good fairness
and a low latency bound but are not very efficient due to the complexity involved in
computing the virtual time function and in having to maintain a sorted list of pack-
ets based on their timestamps. WFQ and WF2Q suffer anO(n) time complexity
to compute the virtual time function, wheren is the number of flows sharing the
same output link. Schedulers such as SCFQ, SFQ and FFQ reduce the complexity
of computing the virtual time toO(1) by using approximations of the correct vir-
tual times. However, they still need to maintain a sorted list of packets based on
their timestamps incurring a per-packet work complexity ofO(log n).

In frame-based schemes, on the other hand, the scheduler provides service oppor-
tunities to the backlogged flows in a particular order and, during each service op-

2 Note that Frame-based Fair Queueing, in spite of its name, is actually a sorted-priority
scheduling discipline. The algorithm uses a framing approach similar to that used in frame-
based schedulers to update the state of the system. However, as in sorted-priority sched-
ulers, packets are transmitted based on their timestamps.
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portunity, the intent is to provide the flow an amount of service proportional to
its fair share of the bandwidth. Examples of such schedulers are Deficit Round
Robin (DRR) [12], Surplus Round Robin (SRR) [13–15] and Elastic Round Robin
(ERR) [16]. The frame-based schedulers do not maintain a global virtual time func-
tion and also do not require any sorting among the packets available for trans-
mission. This reduces the implementation complexity of frame-based scheduling
disciplines toO(1), making them attractive for implementation in routers and, es-
pecially so, in hardware switches. However, these frame-based schedulers suffer
the following disadvantages:

• High Start-Up Latency:The above frame-based schedulers operate in a round-
robin fashion, with each active flow receiving exactly one opportunity to transmit
in each round. When a new flow becomes active, it has to wait until all other
previously active flows receive their service opportunity before it can receive
service from the scheduler. With large numbers of flows, this time period can be
very large, especially in comparison to sorted-priority schedulers such as WFQ
and WF2Q.

• Bursty output:Each flow is served over a continuous time interval during its
round robin service opportunity leading to a bursty packet stream at the output
of the scheduler for any given flow. This is not an ideal situation for real-time
multimedia traffic since even smooth flows are rendered bursty as they exit the
scheduler.

• Delayed correction of unfairness:If a flow receives very little service in a partic-
ular round, it is compensated with proportionately more service in the next round.
While this disadvantaged flow waits for its compensation in the next round, other
flows which have already received more service than their fair share in the pre-
vious round continue to receive yet more service before the disadvantaged flow
receives its opportunity.

• Compounded Jitter:When a flow’s arrival pattern at the scheduler has high jitter,
it can frequently happen that the flow runs out of packets even before it has
received its fair share of service during its service opportunity. At this point,
the scheduler moves on to serve other currently active flows in a round-robin
fashion. Our flow with high jitter will receive its next opportunity only in the next
round after all the other active flows have completed their transmissions. This
further increases the jitter in the output of the scheduler since a delayed packet
that just misses its service opportunity in a certain round ends up experiencing
significant additional delay because of having to wait for all the other active flows
to complete their transmissions.

These weaknesses of frame-based schedulers discussed above are caused by the
same features that are common to these schedulers:

(1) The round robin nature of the service order.
(2) Each flow receives its entire share of service in the round at once in one service

opportunity.
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Overcoming these weaknesses while preserving theO(1) complexity of frame-
based schedulers forms the primary motivation behind this report.

At least a few proposals have been made in the last few years to overcome the
limitations of frame-based schedulers discussed above. The Nested-DRR scheduler
proposed in [17] tries to eliminate some of these limitations of the DRR scheduler
[12]. For each flowi, the DRR scheduler maintains aquantum, Qi, which represents
the ideal service that the flow should receive in each round of service. If the entire
quantum is not used in a given round, the deficit is recorded and used to compensate
the flow in the next round. Nested-DRR splits each DRR round, referred to as an
outer round, into one or more smallerinner roundsand executes a modified version
of the DRR algorithm within each of these inner rounds. IfQmin is the quantum
assigned to the flow with the lowest reserved rate, the Nested-DRR scheduler tries
to serveQmin worth of data from each flow during each inner round. During an
outer round, a flow is considered to be eligible for service in as many inner rounds
as are required by the scheduler to exhaust its quantum. The Nested-DRR scheduler,
just like the DRR scheduler, has a per-packet work complexity ofO(1) as long as
the largest packet that may potentially arrive in flowi is smaller thanQi.

The technique of nesting smaller rounds within a round as in the Nested-DRR
scheduler may be adapted for use with otherO(1) schedulers such as ERR and
SRR. The Nested-DRR scheduler results in a significant improvement in the la-
tency in comparison to DRR, but only in those cases in which there is a significant
difference between the quanta assigned to the flows. If all flows are of the same
weight, the behavior of the Nested-DRR scheduler is identical to that of DRR. Fur-
ther, the improvement gained in fairness or latency is again limited by the fact that,
within each inner round, the nested scheduler still serves the active flows in a round
robin manner.

The Pre-order DRR algorithm proposed in [18] combines the nesting technique
explained above with a scaled down version of the sorting of packets used in the
sorted-priority schedulers and thus, succeeds in overcoming some of the drawbacks
of the DRR scheduler. The Pre-order DRR scheduler adds a limited number of pri-
ority queues in which packets wait before being actually scheduled for transmis-
sion. The packets that are transmitted in a DRR round from each flow are now
classified into these queues depending on the percentage of the flow’s quantum that
each packet will utilize following its transmission. Thus, the transmission sequence
of the packets in a round in DRR isreorderedallowing certain packets to receive
priority over others, resulting in an improvement in the latency and fairness prop-
erties.
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1.2 Contributions

In this report, we propose a novel packet scheduler,Prioritized Elastic Round Robin
(PERR), which exhibits improved fairness and latency characteristics in compari-
son to other known schedulers of equivalent complexity, including Pre-order DRR
discussed earlier. The total service received by a flow in a round in PERR is identi-
cal to the service received by the flow in the corresponding round in ERR. However,
in PERR, this service received by a flow is split into several parts over the course
of the round. The PERR scheduler, borrowing the principle used in Pre-order DRR,
re-orders the transmission sequence within each round of the ERR scheduler. The
transmission sequence of the packets in a round is reordered to allow the flows that
have received less service in the previous round to gain precedence over the other
flows in the current round. The exact manner in which the transmission sequence
is re-ordered depends on a certain per-flow state that indicates how far ahead or
behind a flow is in consuming its share of bandwidth. As in the Pre-order DRR, the
scheduler maintains a limited number,p, of priority queues which serve to imple-
ment the re-ordered transmission sequence.

The PERR scheduler achieves a significant improvement in the fairness, latency,
and delay jitter characteristics and addresses several of the weaknesses (such as
burstiness of output traffic) of round-robin schedulers. In addition to its superior
fairness and latency characteristics, the PERR scheduler holds several advantages
over other schedulers, such as Pre-order DRR, that have attempted to address these
weakness of round-robin schedulers. For example, at the start of a round, the Pre-
order DRR scheduler has to classify all the packets that will be transmitted by the
active flows in that round into the priority queues prior to the beginning of the
transmission of the packets. On the contrary, the PERR scheduler simply has to
classify the flows (as opposed to packets) present in theActiveListinto its priority
queues before the start of the round. This reduces the buffering requirements and the
delay through the finite state machines managing the transmission scheduling, since
classifying all the packets in the round into priority queues requires considerably
more time than simply sorting the flow identifiers. In addition, in comparison to Pre-
order DRR, this allows a more dynamic re-ordering of the transmission sequence
based on the latest state of the flows, leading to improved fairness at all instants of
time.

As shown in [16, 19], the ERR scheduler has a couple of important advantages in
comparison to DRR. Since PERR is based on the ERR scheduler, PERR inherits
some of these advantages as well. For example, unlike DRR or Pre-order DRR, the
PERR scheduler does not require the knowledge of the transmission time of each
packet prior to the scheduling operation. As a result, the scheduler can be used in
other networks such as wormhole networks, where the transmission time of a packet
depends not only on the size of the packet but also the downstream congestion. For
the same reasons, PERR—but not DRR or Pre-order DRR—may be used in ATM
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networks transmitting IP packets over AAL5, where the end of the packet is not
known until the arrival of the last ATM cell corresponding to the packet.

Further, in this report, we analytically prove the fairness and latency properties of
PERR, using a novel approach based on interpreting the PERR scheduler as an
instance of the Nested Deficit Round Robin (Nested-DRR) discipline discussed
in [17]. We prove that the latency bound obtained in this report using this approach
is tight. We also show that the per-packet work complexity of the PERR scheduler
isO(1) with respect to the number of flows andO(log p) with respect to the number
of priority queues,p. The fairness and latency measures used in this report and in
other literature on scheduling algorithms, however, are only bounds and do not
accurately capture the behavior of the scheduler most of the time under normal
circumstances. Therefore, we borrow a measure of inequality used in the field of
economics to comparatively judge the instantaneous fairness achieved by PERR
with both synthetic traffic and real gateway traffic traces.

1.3 Organization

The rest of the report is organized as follows. Section 2 presents an overview of the
ERR algorithm and illustrates some of its disadvantages. In Section 3, we present
our new scheme, Prioritized Elastic Round Robin (PERR), which aims at overcom-
ing the drawbacks of ERR. Section 4 discusses the interpretation of PERR band-
width allocations as an instance of allocations in a nested version of ERR. Section 5
presents analytical results which prove the fairness, latency and efficiency proper-
ties of PERR. Section 6 provides a tabulated summary of PERR in comparison to
other guaranteed-rate scheduling disciplines. Section 7 presents simulation results
using both synthetic traffic and real gateway traffic traces. Finally, Section 8 con-
cludes the report.

2 Elastic Round Robin (ERR)

Elastic Round Robin (ERR) [16,19] is a recently proposed fair and efficient schedul-
ing discipline for best-effort traffic as well as traffic that requires guaranteed ser-
vices. In this section we present a brief overview of ERR, upon which the PERR
scheduler is based.

Consider an output link of transmission rater, access to which is controlled by the
ERR scheduler. Letn be the total number of flows and letρi be the reserved rate for
flow i. Let ρmin be the lowest of these reserved rates. Note that since all the flows
share the same output link, a necessary constraint is that the sum of the reserved
rates be no more that the transmission rate of the output link. In order that each
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flow receives service proportional to its guaranteed rate, the ERR scheduler assigns
a weight to each flow. The weight assigned to flowi, wi is given by,

wi =
ρi

ρmin

(1)

Note that for any flowi, wi ≥ 1.

A flow is said to beactiveduring an interval of time if it always has packets await-
ing service during this interval. A maximal interval of time during which a flow is
continuously active is called anactive periodof the flow. The ERR scheduler main-
tains a linked list of the active flows, called theActiveList. At the start of an active
period of a flow, the flow is added to the tail of theActiveList. A roundis defined as
one round robin iteration during which the ERR scheduler serves all the flows that
are present in theActiveListat the outset of the round. Each flow receives no more
than one service opportunity during each round. The scheduler selects the flow at
the head of theActiveListfor service and calculates itsAllowance, defined as the
number of bits that the flow can transmit during the current round. This allowance,
however is not a rigid one and is actuallyelastic. In other words, a flow may be
allowed to receive more service in the current round than its allowance. LetAi(s)
represent the allowance for flowi in some rounds and letSent i(s) represent the
actual service received by flowi during this round. The ERR scheduler will begin
the transmission of the next packet in the queue of flowi if and only if Sent i(s)
is less thanAi(s). Note that the last packet transmitted by flowi during rounds
may causeSent i(s) to exceedAi(s). In this case, flowi receives more than its fair
share of the bandwidth. This excess usage is recorded in theSurplus Count (SC).
Let SC i(s) represent the surplus count of flowi in rounds. Following the service
of flow i during thes-th round, its surplus count is computed as follows:

SCi(s) = Sent i(s)− Ai(s) (2)

Let MaxSC (s) denote the largest normalized surplus count among all flows served
during rounds. In other words,

MaxSC(s) =
max

∀i served in rounds





SCi(s− 1)

wi



 (3)

This quantity is recursively used to compute the allowance of each flow in the
subsequent round, as follows:

Ai(s) = wi(1 + MaxSC (s− 1))− SCi(s− 1) (4)

Note that the allowance of a flow in a certain round depends on the surplus count
of the other flows in the previous round. Each flow seeks to catch up with the flow
that has the largest normalized surplus count among all flows served in the previous
round.
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Let m be the size in bits of the largest packet that is actually served during the
execution of a scheduling algorithm. It is proved in [16] that for any flowi and
rounds,

0≤SCi(s) ≤ m− 1 (5)
0≤MaxSC (s) ≤ m− 1 (6)

The above results will be important in our later analysis of PERR in Section 5.

3 Prioritized Elastic Round Robin

The basic principle of the PERR scheduler involves modifying the transmission
sequence of the packets that are scheduled within each round in ERR. This re-
ordering is performed upon the transmission of each packet, and is carried out based
on the amount of each active flow’s allowance for the round that is actually con-
sumed until the instant that the re-ordering is executed. This allows each flow to
utilize its allowance in pieces over the duration of each round. The reordering is
implemented through the use of priority queues, which are nothing but linked lists
of flow identifiers. The scheduler transmits packets from the flows in the highest
priority queue first, and begins serving a flow in another priority queue only af-
ter all higher priority queues are empty. The core aspect of the PERR algorithm is
how it manages these priority queues and rearranges flows amongst these priority
queues.

In this section, we present a detailed description of the PERR algorithm. We be-
gin our discussion by introducing certain important definitions that are essential to
understanding the rationale behind the design of the PERR scheduler.

As in ERR, letSent i(s) represent the total service received by flowi in the s-th
round of service. Assume that a total ofy packets are transmitted from flowi in
round s. The packets are labeled as 1, 2,. . ., y, indicating their position in the
transmission sequence of flowi. Let Sentk

i (s) represent the total data transmitted
by flow i after completion of the transmission of the firstk packets of the flow
during thes-th round. Note that the service received by flowi in rounds prior to
the transmission of its first packet in that round is equal to zero, i.e.,Sent0

i (s) = 0.
Also, note thatSenty

i (s) = Sent i(s), since both represent the total service received
by flow i in rounds. In general, of course,

0 ≤ Sentk
i (s) ≤ Sent i(s), 0 ≤ k ≤ y

The following defines a quantity that tracks the unused portion of a flow’s al-
lowance, and thus serves to help in determining the priority queue into which the
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flow should be placed.

Definition 1 Define theUnserved Allowanceof a flow at any given instant of time
during a certain round as the flow’s allowance for the round minus the amount of
traffic transmitted by the flow during the round until that instant.

Let UAk
i (s) represent the unserved allowance of flowi after the transmission of its

k-th packet during thes-th round. In general,UAk
i (s) is computed as follows:

UAk
i (s) = Ai(s)− Sentk

i (s) (7)

At the start of rounds, before service for flowi begins,UA0
i (s) is exactly equal

to the flow’s allowance for the round,Ai(s). Note that the last packet transmitted
from flow i in rounds may cause the flow to exceed its allowance. This may result
in a negative value ofUAk

i (s).

Definition 2 DefineUAmax
i (s) as the maximum possible value of the unserved al-

lowance of flowi in round s. At the start of each round, the unserved allowance
of a flow is initialized to its allowance for the round, as defined in Equation (4).
Therefore,UAmax

i (s) equals the maximum possible value of the right-hand side of
Equation (4). Using Equation (5), we have,

UAmax
i (s) = wi(1 + MaxSC (s− 1)) (8)

The ratio of the unserved allowance of a flow at a given instant and the allowance
of the flow for the entire round represents the fraction of the allowance of a flow
that is not yet consumed until the given instant. This ratio accurately captures how
far ahead or behind a flow is in comparison to other flows in obtaining its fair share
of service, and may therefore be used in placing flows in specific priority queues.
However, an approximation to this quantity is necessary to ensure a per-packet
work complexity ofO(1) for PERR.

Normalizing the unserved allowance of a flow with respect to its maximum pos-
sible value (instead of the actual allowance of the flow for the round) represents
one measure, though not necessarily the most accurate measure, of the fraction of
its allowance that is not yet consumed. The PERR scheduler uses this approxima-
tion which is necessary for the efficient implementation of the scheduler. It will be
shown in later sections of this report that, in spite of this approximation, the PERR
scheduler achieves better fairness than other knownO(1) schedulers.

Definition 3 TheUnserved Allowance Quotientof a flow at any given instant is
defined as the ratio of the unserved allowance of the flow at that instant and its
maximum possible unserved allowance,UAmax

i (s). Let Qk
i (s) represent the un-

served allowance quotient of flowi after the transmission of thek-th packet of flow
i during thes-th round.
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Qk
i (s) is given by,

Qk
i (s) =

UAk
i (s)

UAmax
i (s)

=
UAk

i (s)

wi(1 + MaxSC (s− 1))
(9)

For purposes of brevity, in the rest of this report, the unserved allowance quotient
will be simply referred to as thequotient.

The quotient of a flow at any given instant during a round represents the approxi-
mate fraction of its unserved allowance that can be used by the flow in the remain-
der of the round. The ERR scheduler never begins dequeuing the new packet from
a flow i if Sentk

i (s) is equal to or more than the allowance,Ai(s). Thus, the next
packet of a flow is transmitted in the same round as the previous packet if and only
if UAk

i (s) is positive. This in turn implies that a flowi, after the transmission of its
k-th packet in rounds, is eligible for more service in the same round if and only if,

0 < Qk
i (s), 0 ≤ k ≤ y (10)

wherey is the number of packets of flowi served during rounds.

The quotient for flowi at the start of rounds is equal toQ0
i (s). Using Equations

(4), (7), (8) and (9) we have,

Q0
i (s) =

UAmax
i (s)− SCi(s− 1)

UAmax
i (s)

Simplifying further, we get,

SCi(s− 1) = (1−Q0
i (s))UAmax

i (s) (11)

This indicates that flowi has already used up(1−Q0
i (s))-th fraction of itsUAmax

i (s)
in the excess service that it received in the previous round(s − 1). If the quotient
for a flow at the start of a round is equal to unity, it implies that the surplus count
of the flow following its service in the previous round is zero, i.e., the flow did not
receive any excess service in the previous round.

In general, the larger the quotient of a flow, the lesser the proportion of itsUn-
servedAllowancethat has been expended in the current round.

Definition 4 DefineQmax (s) as the maximum of the quotients among all active
flows at the start of rounds.

Since theUnserved Allowancefor each flow at the start of a round is equal to its
allowance, using Equations (4), (8) and (9), we have,

Q0
i (s) =

wi(1 + MaxSC (s− 1))− SCi(s− 1)

wi(1 + MaxSC (s− 1))
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This implies that the flowi with the least value ofSC i(s−1)
wi

, which is the normalized
surplus count at the end of the previous round(s − 1), will be the one with the
maximum value of the quotient among all active flows at the start of rounds.

Ideally the scheduler should serve a packet from the flow with the largest quotient
among all the active flows since it has received the least service in the current round.
However, the complexity of maintaining a sorted list of active flows based on their
quotients, and the complexity of computing the maximum in this list prior to each
packet transmission is high. Givenn flows, the work complexity of the scheduler
prior to each packet transmission would beO(log n). The PERR scheduler avoids
this by grouping the flows into a limited number of priority queues.

Selector

PQ1

PQ p

PQ
2

Scheduler

n

2

1

Flow Queues
Scheduling Decision Module

(a)

Selected Flow

(b)

Scheduling Decision Module

Priority QueuesFlow State Variables

ActiveList

Organizer

Output Link

Fig. 1. Block Diagram of (a) PERR Scheduler and (b) Scheduling Decision Module of
PERR

Fig. 1(a) illustrates a block diagram of a generic scheduler. TheScheduling Deci-
sion Modulewhich determines the order in which packets are served from the flow
queues is the heart of the scheduler. Fig. 1(b) details the architecture of theSchedul-
ing Decision Moduleof the PERR scheduler which is responsible for selecting the
next flow for service. As can be seen from Fig. 1(b), anOrganizer, p priority queues
and aSelectorare appended to the originalScheduling Decision Moduleof ERR.
Let PQ1, PQ2, . . . andPQp denote the priority queues in the descending order
of priority with PQ1 representing the queue with the highest priority. Unlike the
priority queues in Pre-order DRR which have to buffer the packets that will be
transmitted in the round in progress, these queues in PERR simply contain the flow
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identifiers. As in ERR, the PERR scheduler maintains a linked list, called theAc-
tiveList, of flows which are active. However, the flows in theActiveListare not
served in a round robin manner as in ERR. This is a list of the active flows that
have exhausted their allowance in the current round but, will be eligible for receiv-
ing service in the subsequent round. It is the task of theOrganizerto determine the
order in which the flows will receive service in a round. At the start of the round,
theOrganizermodule classifies the active flows present in theActiveListinto sev-
eral classes according to theirUnserved Allowance Quotientand places them into
the corresponding priority queue. Since there arep priority queues, theOrganizer
can classify the flows intop classes. In general, classz of flow i after serving the
k-th packet of thes-th round is derived as,

z = (p + 1)−
⌈
p× Qk

i (s)

Qmax (s)

⌉
(12)

Note that at the start of thes-th round,k = 0 for all the flows in the above equation.

Note that the quotient of a flow is a monotonically decreasing function of time
over the duration of a round. Using this fact and the definition ofQmax (s), we can
conclude that during rounds, the quotients of all the active flows will always be
less than or equal toQmax (s), and thusz is always a non-negative quantity. By the
above method, the flow with the maximum quotient at the start of the rounds is
initially added into the highest priority queue,PQ1.

Note thatQmax (s) is computed only at the start of the round and need not be up-
dated as the round progresses. The computation ofQmax (s) simply requires the
scheduler to record the least value of the normalized surplus count amongst all the
flows in theActiveList. This can be easily accomplished inO(1) time by carrying
out a simple comparison operation as the flows are added into theActiveListafter
exhausting their allowance in the previous round.

Consider a situation where a flowi becomes active for the first time while some
rounds is in progress. It may be possible that the the initial value of the quotient
of flow i, Q0

i (s) is greater thanQmax (s). Using Equation (12), it is seen that the
priority class for flowi is less than1, the highest priority class. One possible solu-
tion would be to delay the service of flowi until the next round as is done in ERR.
However, this would result in an increased latency for flowi since it would then
have to wait until all the active flows have exhausted their allowance before receiv-
ing any service. The PERR scheduler instead simply adds flowi into the highest
priority queuePQ1. This eliminates the increased latency that would be otherwise
experienced by flowi.

When the scheduler is ready to transmit, theSelectormodule selects the highest
non-empty priority queue, sayPQe and chooses the flow at the head ofPQe, say
flow i, for service. The scheduler serves the packet at the head of the queue corre-
sponding to flowi and following the service of this packet recalculates the priority
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class,z, to which flowi belongs using Equation(12). The scheduler will continue
to serve the next packet from the queue of flowi until the occurrence of at least one
of the following events:

(1) A newly active flow is added to a higher priority queue :In this case, the
scheduler stops the service of flowi and begins serving the newly active flow
since it belongs to a higher priority class than flowi.

(2) Queue of flowi is empty :In this case, flowi is removed from the head of
priority queuePQe. Also, theServed flag for flow i is set to indicate that it
has received service in the current round.

(3) The newly computed priority class of flowi, f , does not match its current
priority class,e : In this case flowi is removed from the head of priority
queuePQe and is added to the tail of priority queuePQf . Note that the only
exception is whenf > p. In this case no further packets are to be scheduled
from flow i during the current round since it has exhausted its allowance. Flow
i is instead added to the tail of theActiveList.

At any given instant of time each active flow can either be present in at most one
of the p priority queues or in theActiveList. Over the course of the round, as the
flow consumes more and more of its allowance, it will gradually move down from
the into lower priority queues until it completely exhausts its allowance following
which it is added into theActiveList. However during a round it is not necessary
that a flow will pass through each of thep priority queues. In fact it may be possible
that the only priority queue which a flow visits is the initial queue into which it is
classified at the start of the round. As a result of the categorization brought about
by the priority queue module in PERR, each flow uses its allowance in pieces over
the course of the round. TheOrganizerreorders the sequence of transmissions to
enable the flows that have not utilized a large portion of theirUnservedAllowance
to get precedence over the other flows.

The PERR scheduler also maintains two flags,Servedand Active for each flow.
The Active flag indicates whether a flow is active or not. TheServedflag is set
when the scheduler serves the first packet from a flow in the current round and
remains set for the entire duration of the round indicating that the flow has been
served at least once during the current round. TheServedflags for all the flows are
reset at the start of a new round. TheServedflag prevents a flow which frequently
oscillates between active and inactive periods to receive excessive service. Consider
a flow which runs out of packets in the middle of a round before utilizing its entire
allowance in that round. Since this flow is no longer active itsActiveflag will be
reset. Assume that a new packet arrives at the flow at some time before the end of
the current round. In the absence of theServedflag this flow would be treated as a
newly active flow and its per-flow states would be reset. This would allow the flow
to receive service in excess of what it would have received if it were active during
the entire duration of the current round. However in PERR, theServedflag will be
set for the flow under consideration indicating that the per-flow states for that flow
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are still valid for the current round. When the flow becomes active it will be added
into the appropriate priority queue using Equation (12) depending on how much of
its UnservedAllowancewas utilized when it was last active in the current round,
and thus, the flow will not receive any excess service. Note that since theServed
flags for all the flows are reset at the end of a round, accumulation of service credits
from a previous round is prevented.

Initialize: (Invoked when the scheduler is initialized)
MaxSC = 0;
CurrentPriority = 0;
Qmax = 1;
MinNormalizedSC = MAX;
for (i = 0; i < n; i = i + 1)

Activei = FALSE;
Servedi = FALSE;

Enqueue: (Invoked when a packet arrives)
i = QueueInWhichPacketArrives;
if ( Activei == FALSE) then

if (Servedi ==FALSE) then
SCi = 0;
Senti = 0;

end if;
InitializeFlow(i);
NewPriority = ComputeNewPriority(i);
AddToPriorityQueue(NewPriority, i);
if (NewPriority > CurrentPriority) then

ObtainHighestActivePriority == TRUE;
end if

end if;

Dequeue:
while (TRUE) do

if (AllPriorityQueuesEmpty == TRUE) then
InitializeRound();

end if;
if(ObtainHighestActivePriority == TRUE) then

CurrentPriority = GetHighestActivePriorityQueue;
end if;
i = HeadOfPriorityQueue(CurrentPriority);
do

TransmitPacketFromQueue(i);
Increase Senti by LengthInFlitsOfTransmittedPacket;
Servedi == TRUE;
NewPriority == ComputeNewPriority(i);

while ( (NewPriority == CurrentPriority) and
(IsEmpty(Queuei ) == FALSE) and
(ObtainHighestActivePriority == FALSE) )

if ( (NewPriority > CurrentPriority) or
(IsEmpty(Queuei) == TRUE) ) then
RemoveHeadOfPriorityQueue(CurrentPriority);
if (IsEmpty(Queuei) == FALSE) then

AddToPriorityQueue(NewPriority, i);
end if
if (IsEmpty(CurrentPriority) == TRUE) then

ObtainHighestActivePriority = TRUE;
end if

end if
end while

Fig. 2. Pseudo-Code for PERR
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InitializeRound()
for (i = 0; i < n; i = i + 1)

Servedi = FALSE;
PreviousMaxSC = MaxSC;
MaxSC = 0;
MinNormalizedSC = MAX;
InitializeFlow(min);
Qmax =

Amin

UAmax

min

;

ObtainHighestActivePriority == TRUE;
while (IsEmpty(ActiveList) == FALSE) do

flow = HeadOfActiveList;
RemoveHeadOfActiveList;
Sentflow = 0;
InitializeFlow(flow);
NewPriority = ComputeNewPriority(flow);
AddToPriorityQueue(NewPriority, flow);
SCflow = 0;

end while;

Fig. 3.InitializeRound() Routine

InitializeFlow(i)
Activei = TRUE;
UAmax

i
= wi(1+ PreviousMaxSC) ;

Ai = UAmax

i
− SCi;

Fig. 4.InitializeFlow() Routine

A psuedo-code implementation of the PERR scheduling algorithm is shown in
Fig. 2, consisting of theInitialize, EnqueueandDequeueroutines. TheEnqueue
routine is called when a new packet arrives at a flow. theDequeueroutine is the
heart of the algorithm which schedules packets from the queues corresponding to
different flows. Figs. 3–6 illustrate the pseudo-code of four routines that are used
in the execution of theEnqueueandDequeueroutines. All of these routines can be
easily implemented as simple hardware modules.

4 Nested Round Robin Interpretation

The primary goal of the PERR scheduler is to distribute theUnservedAllowanceof
a flow in an ERR round into several parts, so that it can be utilized in pieces over
the course of the round. The Nested-DRR algorithm proposed in [17], modifies the
DRR scheduler by creating a nested set of multiple rounds inside each DRR round.
The Nested-DRR scheduler serves the active flows in a round robin order in these
nested rounds by executing a modified version of the DRR algorithm.

The primary goal of the PERR scheduler is to distribute theUnservedAllowanceof
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AddToPriorityQueue(z, i);
if (z > p) then

AddFlowToActiveList(i);
SCi = Senti − Ai;
if ( SCi

wi

> MaxSC) then

MaxSC =

SCi

wi

;
end if
if ( SCi

wi

< MinNormalizedSC ) then
min = i;
MinNormalizedSC =

SCi

wi

;
end if

else
AddFlowToPriorityQueue(Pqz , i);

end if

Fig. 5.AddToPriorityQueue() Routine

ComputeNewPriority(i)
Qi = Ai−Senti

Amax

i

;

z = (p + 1) −

⌈

Qi×p

Qmax

⌉

;

return z;

Fig. 6.ComputeNewPriority() Routine

a flow in an ERR round into several parts, so that it can be utilized in pieces over
the course of the round. The Nested-DRR algorithm proposed in [17], modifies the
DRR scheduler by creating a nested set of multiple rounds inside each DRR round.
The Nested-DRR scheduler serves the active flows in a round robin order in these
nested rounds by executing a modified version of the DRR algorithm.

We can hypothetically interpret the operation of the PERR scheduler as anested
version of ERR which is similar to Nested-DRR. This interpretation proves useful
in the analysis of the latency bound of the PERR scheduler. Each round in ERR
can be referred to as anouter round. The time interval during which the PERR
scheduler serves the flows present in priority queuePQu during thes-th outer round
is referred to asinner round(s, u). In effect, each outer round is split into as many
inner rounds as the number of priority queues,p. Since the PERR scheduler serves
the priority queues in a descending order starting at the higher priority queuePQp,
the first inner round during outer rounds will be (s, 1), while (s, p) will denote the
last inner round.

From Equation (11), we know that the excess service, if any, received by each flowi
in the previous outer round(s−1) is equal to(1−Q0

i (s))UAmax
i (s). SinceQmax (s)

represents the maximum quotient among all the flows at the start of rounds, it is
guaranteed that each active flowi has already utilized at least(1 − Qmax (s))-th

17



fraction of its(UAmax
i (s)) during its last service opportunity in the previous round

(s − 1). The goal of the PERR scheduler is to distribute the remaining portion of
each flow’s maximum possibleUnservedAllowance, Qmax (s)(UAmax

i (s)), equally
among thep inner rounds. LetIdealServed i(s) represent the ideal service received
by flow i during each inner round of thes-th outer round.IdealServed i(s) is com-
puted as follows,

IdealServed i(s) =
Qmax (s)(UAmax

i (s))

p
(13)

Ideally, therefore, each flowi will receive exactlyIdealServed i(s) amount of ser-
vice in each of thep inner rounds of outer rounds. In reality, however, the last
packet served in an inner round from a flow may cause it to exceed its ideal ser-
vice in that inner round. Just as in ERR, aSurplus Count (SC)is maintained for
each flow which records any excess service received by the flow. The flow is penal-
ized for this excess transmission in the subsequent inner round. When the sched-
uler selects a flowi for service in an inner round(s, u), its SC is incremented by
IdealServed i(s). The scheduler will serve the packet at the head of flowi as long as
its SC value is positive. Following the transmission of a packet, the SC correspond-
ing to that flow is decremented by the size of the transmitted packet. LetSC i(s, u)
represent the surplus count of flowi at the end of inner round(s, u). Further, let
Served i(s, u) denote the actual service received by flowi in inner round(s, u).
SC i(s, u) is calculated as follows,

SCi(s, u) = Served i(s, u)− (IdealServed i(s) + SCi(s, u− 1)) (14)

Note that, ifIdealServed i(s) is less than or equal to theSC i(s, u − 1), then flowi
will not receive any service in inner round(s, u). Thus, a flow does not necessarily
receive service in each inner round. However, the surplus count for flowi is updated
at the end of each inner round using Equation (14), irrespective of whether the flow
receives service in that inner round or not. In fact, it may be possible that none of
the active flows receive service in an inner round. Hence, if the PERR scheduler
followed a round robin service order as in Nested-DRR, then the scheduler would
have a prohibitively large work complexity. However, theOrganizermodule of the
PERR scheduler decides which priority queues each active flow is added into over
the course of each outer round. This, in turn, determines the inner rounds in which
each flow will be served. The PERR scheduler does not need to query all the active
flows in a round robin order, thus leading to a low implementation complexity.

Note that the surplus count of a flow at the end of the last inner round of an outer
round is the same as its surplus count at the end of the corresponding round in
ERR. In other words,SC i(s, p) is the same asSC i(s). Also, note thatSC i(s, 0)
represents the surplus count of flowi at the start of the first inner round,(s, 1),
in outer rounds. As explained earlier, we know that flowi should ideally trans-
mit Qmax (s)(UAmax

i (s)) worth of data in outer rounds. The remaining fraction,
(1 − Qmax (s))-th of the quantityUAmax

i (s), has already been utilized in the ex-
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cess service received by flowi in outer round(s − 1) and, therefore, is a part of
SC i(s− 1). To account for this already utilized portion ofUAmax

i (s), SC i(s, 0) is
computed as:

SCi(s, 0) = SCi(s− 1)− (1−Qmax (s))(UAmax
i (s)) (15)

It can be easily proved that Equation (5), which expresses the bounds on the surplus
count,SC i(s), also holds true forSC i(s, u). Therefore, for any flowi and inner
round(s, u),

0 ≤ SCi(s, u) ≤ m− 1 (16)

Definition 5 LetSent i(s, u) represent the total service received by flowi since the
start of thes-th outer round until the PERR scheduler has finished serving the flows
in the priority queue,PQu.

Note that it is not necessary that flowi was present in priority queuePQu during
outer rounds. From Equation (14), the total data served from flowi in inner round
(s, u) is,

Served i(s, u) = IdealServed i(s) + SCi(s, u)− SCi(s, u− 1) (17)

Sent i(s, u) is calculated as follows:

Sent i(s, u) =
w=u∑

w=1

Served i(s, w) (18)

Substituting forServed i(s, w) from Equation (17) in Equation (18), we have,

Sent i(s, u) = u(IdealServed i(s)) + SCi(s, u)− SCi(s, 0) (19)

Sent i(s, u) will be positive only if u(IdealServed i(s)) is greater thanSC i(s, 0).
Otherwise it indicates that flowi has not received any service until the end of the
(s, u)-th inner round. However flowi is guaranteed to receive service in at least
one inner round during thes-th outer round. Using Equations (13), (15) and (19)
we have,

Sent i(s, u) =

(
u

p

)
Qmax (s)UAmax

i (s) + SCi(s, u)− SCi(s− 1) (20)

Definition 6 DefineSent i(s) as the total service received by flowi in outer round
s.

Note thatSent i(s, p) represents the service received by flowi when the scheduler
has finished serving the flows in priority queuePQp which in fact equalsSent i(s).
Substitutingu = p in Equation (20) and using Equation(8), we get,

Sent i(s) = wi(1 + MaxSC (s− 1)) + SCi(s)− SCi(s− 1) (21)
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Fig. 7. Comparison of the transmission sequence of packets in ERR and PERR

Hence the total service received by flowi in an outer round in PERR is identical to
the service received by flowi in the corresponding round in ERR.

Ideally, during the normal operation of the PERR scheduler, thep inner rounds in
outer rounds follow a strictly sequential order starting at inner round(s, 1) and
ending at round(s, p). However, in certain situations, it is possible to interrupt the
sequential ordering. Let us assume that a flowj becomes active for the first time in
outer rounds while the PERR scheduler is serving a flowk at the head of priority
queuePQd. Since the quotient for flowj is equal to 1, it will be added into prior-
ity queuePQ1 which has the highest priority among all the priority queues. Upon
finishing the transmission of the current packet from flowk, the PERR scheduler
temporarily suspends the service of flowk and starts serving flowj which is at
the head of queuePQp. The PERR scheduler will keep serving flowj until it is
added either into priority queuePQd or some other queue with lower priority than
PQd. The scheduler will then resume service of thek-th flow. Note that the service
received by flowi while it is present in queuePQp is part of the inner round(s, p)
even though it is not contiguous with the time interval during which the PERR
scheduler served the flows present in queuePQp at the start of the outer rounds.
Also, the inner round(s, d) will not extend over a continuous time interval because
it will be interposed by the entire service received by flowi since the time it be-
came active until its addition into priority queuePQd or a lower priority queue. It
is, therefore, not necessary that the inner rounds in an outer round should sequen-
tially follow one another and that the flows which receive service in an inner round
should be served in succession. However, note that this disruption of the otherwise
sequential service can only be caused due to a new flow becoming active during the
execution of that outer round.

Fig. 7 compares the transmission sequence in the first two rounds of execution of
the ERR and PERR schedulers for the given input pattern and flow weights. In
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the PERR scheduler, the flows are classified into 4 classes corresponding to the
4 priority queues. At the start of inner round(1, 1) all the flows are present in
priority queuePQ1. After receiving service in this inner round, flowA is added
into PQ4. However the other 3 flows exceed their allowance in this inner round and
are therefore added into theActiveList. Note that, in the second outer round, unlike
the ERR scheduler where the flowsB, C andD have to wait for their turn in the
round robin order to receive service, flowsB andD start receiving service in the
inner round(2, 1) whereas flowC is served for the first time in inner round(2, 2).

5 Analytical Results

In this section, we present analytical results on the fairness, latency properties and
the work complexity of PERR.

5.1 Latency Bound of PERR

In deriving an upper bound on the latency of PERR we use the concept of Latency-
Rate (LR) servers first proposed in [5]. We now define the notion of a busy period,
essential for developing the concept of theLR servers.

Definition 7 A busy period of a flow is defined as the maximal time interval during
which the flow is active if it is served at exactly its reserved rate.

Note that the active period of a flow is different from the busy period in the sense
that it reflects the actual behavior of the scheduler where the instantaneous service
offered to the flow varies according to the number of active flows.

Definition 8 Let Sent i(t1, t2) represent the amount of service received by flowi
during the time interval(t1, t2).

Note that this notation is identical to the one used in Definition 5, except for the type
of the parameters. Thus,Sent i(β, γ) is to be interpreted according to whetherβ and
γ represent two instants of time or(β, γ) denotes an inner round in the execution
of the PERR scheduler. In the following, the context will always make clear as to
howSent i(β, γ) should be interpreted.

Let the time instantαi be the start of a busy period for flowi. Let t > αi be
such that flowi is continuously busy during the time interval(αi, t). Let Si(αi, t)
be the number of bits belonging to packets in flowi that arrive after timeαi and
are scheduled during the time interval(αi, t). Note that, during this time interval
the scheduler may still be serving packets from a previous busy period, and hence
Si(αi, t) is not necessarily the same asSent i(αi, t).
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Definition 9 The latency of a flow is defined as the minimum non-negative constant
Θi that satisfies the following for all possible busy periods of the flow,

Si(αi, t) ≥ max{0, ρi(t− αi −Θi)} (22)

As defined in [5], a scheduler which satisfies Equation (22) for some non-negative
constant value ofΘi is said to belong to the class of Latency Rate (LR) servers. In
practice, however it is easier to analyze scheduling algorithms based on the active
period of a flow. Letτi be an instant of time when flowi becomes active. Let
t > τi be some time instant such that the flow is continuously active during the time
interval(τi, t) Let Θ′

i be the smallest non-negative number such that the following
equation is satisfied for allt.

Senti(αi, t) ≥ max{0, ρi(t− αi −Θ′
i)} (23)

Even though(τi, t) may not be a continuously busy period for flowi, it is proved
in [5], that the latency as defined by (22) is bounded byΘ′

i.

Theorem 1 The PERR scheduler belongs to the class ofLR servers, with an upper
bound on the latencyΘi for flow i given by,

Θi ≤
(W−wi)m

p
+ (n− 1)(m− 1)

r
(24)

wheren is the total number of active flows,p is the number of priority queues,r is
the transmission rate of the output link andW is the sum of the weights of all the
flows.

Proof. Since the latency of aLR server can be estimated based on its behavior
in the flow active periods, we will prove the theorem by showing that,

Θ′
i ≤

(W−wi)m
p

+ (n− 1)(m− 1)

r
.

Let τi be the time instant when flowi becomes active. To prove the statement of
the theorem we consider a time interval(τi, t), wheret > τi, during which flowi
is continuously active. We first obtain the lower bound on the total service received
by flow i during the time interval under consideration. Then we express the lower
bound in the form of Equation (23) to derive the latency bound.

In [19] it has been proved that to obtain a tight upper bound on the latency of the
ERR scheduler, we must consider an active period(τi, t) such thatτi coincides with
the beginning of the service opportunity of a flow andt belongs to the set of time
instants at which the scheduler begins serving flowi. We can easily prove that the
same conditions apply for proving the upper bound on the latency of the PERR
scheduler. Letτ (e,f)

i be the time instant marking the start of the service of flowi
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when flowi is at the head of priority queuePQf in rounde. In other words, this
time instant represents the start of the service opportunity of flowi in inner round
(e, f). Therefore, in trying to determine the latency bound of the PERR, we need
to only consider time interval(τi, τ

(e,f)
i ) for all (e, f).

The first step in proving the latency bound involves determining the upper bound
on the size of the time interval under consideration. Note that the time instantτi

may or may not coincide with the start of a new round. Letk0 be the round which is
in progress at time instantτi or which starts exactly at time instantτi. Let th mark
the start of the round(k0 + h). In either case, flowi will be able to transmit at least
Ai(k0) worth of data over the course of thek0-th round. If flow i becomes active
when the roundk0 is in progress, i.e. whenτi < t0 then the service received during
the interval(t0, τi) will be excluded from the time interval under consideration. The
time interval(τi, τ

(e,f)
i ) will be maximal only if the time instantτi coincides with

t0, the start of thek0-th round. Hence we assume thatτi coincides with the start of
the thek0-th round. Fig. 8 illustrates the interval under consideration assuming that
(e, f) is equal to(k0 + k, v). Note that in Fig. 8,OR(e) represents thee-th outer
round in the execution of the PERR scheduler andIR(e, f) denotes the inner round
(e, f).

time

t 0
t 1 t k t k+1
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i

becomes active
Flow i

time interval
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Fig. 8. An illustration of the time interval under consideration

The time interval under consideration,(τi, τ
(k0+k,v)
i ), can be split into two sub-

intervals:

(1) (τi, tk): This sub-interval includesk rounds of execution of the PERR sched-
uler starting at roundk0. Consider the time interval (th, th+1) when round
(k0 + h) is in progress. Summing Equation (21) over alln flows,

th+1 − th =
W

r
(1 + MaxSC (k0 + h− 1))

+
1

r

n∑

j=1

{SCj(k0 + h)− SCj(k0 + h− 1)}
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Summing the above overk rounds beginning with roundk0,

tk − τi =
W

r
(k) +

W

r

k−1∑

h=0

MaxSC (k0 + h− 1)

+
1

r

n∑

j=1

{SCj(k0 + k − 1)− SCj(k0 − 1)} (25)

(2) (tk, τ
(k0+k,v)
i ): This sub-interval includes the part of the(k0 + k)-th round

prior to the start of the service of flowi when it is at the head of priority
queuePQv. In the worst-case flowi will be the the last flow to receive service
among all other flows which are present in priority queuePQv. In this case,
during the sub-interval under consideration, the service received by flowi
equalsSent i(k0+k, v−1) whereas the service received by each flowj among
the othern−1 flows equalsSent i(k0+k, v). Note that ifv equals1 then flowi
does not receive service in this sub-interval. Hence summingSent i(k0+k, v−
1) andSent j(k0 + k, v) for each flowj such that1 ≤ j ≤ n, j 6= i and using
Equation (20), we have,

τ
(k0+k,v)
i − tk =

1

r

n∑
j=1
j 6=i

(
v

p

)
Qmax (k0 + k)UAj(k0 + k)

+
1

r

(
v − 1

p

)
Qmax (k0 + k)UAi(k0 + k)

+
1

r

n∑
j=1
j 6=i

(SCj(k0 + k, v)− SCj(k0 + k − 1))

+
1

r
(SCi(k0 + k, v − 1)− SCi(k0 + k − 1)) (26)

To simplify the analysis we introduce a new variableΩ, such that,

Ω = Qmax (k0 + k)(1 + MaxSC (k0 + k − 1)) (27)

Using Equation (6) and Corollary 1 in Equation (27), we get,

0 < Ω ≤ m (28)

Combining Equations (25) and (26) and using Equations (5), (8) and (27), we have,

τ
(k0+k,v)
i −τi ≤ W

r
k +

W

r

k−1∑

h=0

MaxSC (k0 + h− 1) +
1

r

n∑
j=1
j 6=i

(
v

p

)
wjΩ

+
1

r

(
v − 1

p

)
wiΩ +

1

r
(n− 1)(m− 1) +

1

r
SCi(k0 + k, v − 1) (29)
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Solving fork and using the fact thatW is the sum of the weights of all then flows,

k ≥ (τ
(k0+k,v)
i − τi)

r

W
−

k−1∑

h=0

MaxSC (k0 + h− 1)− 1

W

(
v

p

)
(W − wi)Ω

− 1

W

(
v − 1

p

)
wiΩ− 1

W
(n− 1)(m− 1)− 1

W
SCi(k0 + k, v − 1) (30)

Note that the total data transmitted by flowi during the time interval under consid-
eration can be expressed as the following summation,

Sent i(τi, τ
(k0+k,v)
i ) = Sent i(τi, tk) + Sent i(tk, τ

(k0+k,v)
i ) (31)

As explained, earlierSent i(tk, τ
(k0+k,v)
i ) is the same asSent i(k, v−1). Sent i(τi, tk)

can be obtained by summing Equation (21) overk rounds starting at roundk0.
Substituting the result and Equation (20) in Equation (31) and using Equation (27)
and the fact that the surplus count of a newly active flow is equal to 0, we have,

Sent i(τi, τ
(k0+k,v)
i ) = wik + wi

k−1∑

h=0

MaxSC (k0 + h− 1)

+

(
v − 1

p

)
wiΩ + SCi(k0 + k, v − 1) (32)

Using (30) to substitute fork in (32), we get,

Sent i(τi, τ
(k0+k,v)
i ) ≥ wir

W
(τ

(k0+k,v)
i − τi) +

(
v − 1

p

)
wiΩ

(
W − wi

W

)

− wi

W

(
v

p

)
(W − wi)Ω− wi

W
(n− 1)(m− 1)

− SCi(k0 + k, v − 1)
(

wi

W
− 1

)

Simplifying further we get,

Sent i(τi, τ
(k0+k,v)
i ) ≥ wir

W


(τ

(k0+k,v)
i − τi)− 1

r

(
W − wi

p

)
Ω

− 1

r
(n− 1)(m− 1)


− SCi(k0 + k, v − 1)

(
wi

W
− 1

)
(33)

Now, since the reserved rates are proportional to the weights assigned to the flows
as given by (1), and since the sum of the reserved rates is no more than the link rate
r, we have,

ρi ≤ wi

W
r (34)

Using Equation (29) it can be verified that the multiplicand ofwir
W

in Equation (33)
is always positive. Substituting forwir

W
from Equation (34) in Equation (33) we
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have,

Sent i(τi, τ
(k0+k,v)
i ) ≥ ρi


(τ

(k0+k,v)
i − τi)− 1

r

(
W − wi

p

)
Ω

− 1

r
(n− 1)(m− 1)


− SCi(k0 + k, v − 1)

(
wi

W
− 1

)
(35)

Noting that the latency reaches the upper bound whenSC i(k0 + k, v − 1) equals 0
andΩ equalsm, we get,

Sent i(τi, τ
(k0+k,v)
i ) ≥ max



0, ρi


τ

(k0+k,v)
i − τi

−

(W−wi

p
)m + (n− 1)(m− 1)

r









 (36)

As discussed earlier, flowi will experience its worst latency during an interval
(τi, τ

(e,f)
i ) for some inner round(e, f). Therefore, from Equation (36), the statement

of the theorem is proved.

We now proceed to show that the latency bound given by Theorem 1 is tight by
illustrating a case where the bound is actually met. Assume that a flowi becomes
active at time instantτi, which also coincides with the start of a certain roundk0.
Assume that for any time instantt, t ≥ τi, a total ofn flows, including flowi,
are active. Also, assume that the summation of the reserved rates of all then flows
equals the output link transmission rate,r. Hence,ρi = wi

W
r. Since flowi became

active at timeτi, its surplus count at the start of roundk0 is 0. Let the surplus count
of all the other flows at the start of roundk0 be equal to 0. Assume that, a flowl
which is not active after timeτi and hence is not included in then flows, was active
during thek0-th round. Assume that flowl exceeded its allowance by(m − 1) in
its last service opportunity in round(k0− 1), leading to a value ofMaxSC (k0− 1)
equal to(m − 1). Since the surplus counts of all then active flows are equal to 0,
the Unserved Allowance Quotientfor all the flows at the start of thek0-th round
will be equal to unity. HenceQmax (k0) will be equal to 1 and all then flows will
be added into the priority queuePQp at the start of the round. Assume that flow
i is the last flow to be added into this queue. From Equations (16), (6) and (17),
any given flowj can transmit a maximum ofwj(

m
p
) + (m − 1) bits during its

service opportunity in an inner round. In the worst case, before flowi is served by
the PERR scheduler, each of the other(n − 1) flows will receive this maximum
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service. Hence, the cumulative delay until flowi receives service is given by,

D =

(
∑

j 6=i

wj)(
m

p
) + (n− 1)(m− 1)

r

=
(W−wi

p
)m + (n− 1)(m− 1)

r

Noting thatSi(τi, τi +D) equals zero, it is readily verified that the bound is exactly
met at timet = τi + D.

5.2 Fairness Bound of PERR

In our fairness analysis, we use the popular metric,Relative Fairness Bound (RFB)
first proposed in [8]. The RFB is defined as the maximum difference in the normal-
ized service received by any two flows over all possible intervals of time.

Definition 10 Given an interval(t1, t2), theRelative Fairness, RF (t1, t2) for this
interval is defined as the maximum value of|Senti(t1,t2)

wi
− Sentj(t1,t2)

wj
| over all pairs of

flowsi andj that are active during this time interval. Define theRelative Fairness
Bound (RFB)as the maximum ofRF (t1, t2) over all possible time intervals(t1, t2).

The Absolute Fairness Bound (AFB)is a related measure of fairness which cap-
tures the upper bound on the difference between the normalized service under the
current scheduler and that it would receive with the ideal GPS scheduler [1]. It has
been shown in [20], that the AFB and RFB are related to each other by a simple
relationship. Hence, we only discuss the RFB in this report.

Theorem 2 For any execution of the PERR scheduling discipline,RFB < 2m+ 2m
p

Proof. In [16], while analyzing the fairness properties of ERR, we have proved
that a tight upper bound on the the RFB of ERR can be obtained by considering only
a subset of all possible time intervals. This subset is the set of all time intervals
bounded by time instants that coincide with the start of the service opportunities
of flows. It can be easily verified that to prove the RFB of the PERR scheduler we
need to consider a time interval(t1, t2) such that both the time instantst1 andt2
coincide with the start of a service opportunity of a flow in an inner round.

Consider any two flowsi and j that are active in the time interval between the
time instantst1 andt2. Let (k0, f) and(k0 + k, g) be the inner rounds which are in
progress at time instantst1 andt2 respectively. Let time instantt(h,v) mark the start
of inner round(k0 +h, v). In other words,t(k0,f) < t1 < t(k0,f+1) andt(k0,g) < t2 <
t(k0,g+1). It may be possible that, if flowj receives service in the inner round(k0, f),
then it does so in the time interval(t(k0,f), t1). Unlike the ERR scheduler, in PERR
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if flow j is served before flowi in a certain inner round then, it is not necessary that
the same order of service is followed in each of the following inner rounds. Hence
on a similar note, it may be possible that if flowj receives service in the inner
round(k0 + k, g), then that service is also not included in the time interval under
consideration. HenceSenti(t1, t2) andSentj(t1, t2) can be evaluated as follows:

Sent i(t1, t2) = Sent i(k0)− Sent i(k0, f − 1)

+
h=k−1∑

h=1

Sent i(k0 + h) + Sent i(k0 + k, g)

Sent j(t1, t2) = Sent j(k0)− Sent j(k0, f)

+
h=k−1∑

h=1

Sent j(k0 + h) + Sent j(k0 + k, g − 1)

Using Equations (8), (20) and (21) in the above and simplifying, we get,

Sent i(t1, t2) =

(
f

p
Qmax (k0)

)
UAmax

i (k0) + k
h=k−1∑

h=1

UAmax
i (k0 + h)

+

(
g

p
Qmax (k0 + k)

)
UAmax

i (k0 + k)

+ SCi(k0 + k, g)− SCi(k0, f − 1) (37)

Sent j(t1, t2) =

(
f − 1

p
Qmax (k0)

)
UAmax

j (k0) + k
h=k−1∑

h=1

UAmax
j (k0 + h)

+

(
g − 1

p
Qmax (k0 + k)

)
UAmax

j (k0 + k)

+ SCj(k0 + k, g − 1)− SCj(k0, f) (38)

Without loss of generality, we can assume that in the interval(t1, t2) flow i receives
more service as compared to flowj. The normalized service for each of the flows
can be obtained by dividing the above two equations by their respective weights.
Subtracting the normalized service of flowj from that of flow i using Equations
(37) and (38) we have,

Sent i(t1, t2)

wi

− Sent j(t1, t2)

wj

=
UAmax

i (k0)Q
max (k0)

wi p

+
UAmax

j (k0 + k)Qmax (k0 + k)

wj p
+

SCi(k0 + k, g)

wi

− SCi(k0, f − 1)

wi

+
SCj(k0 + k, g − 1)

wj

− SCj(k0, f)

wj

Simplifying the above using Equations (6), (8), (16) and Corollary 1, the statement
of the theorem is proved.
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5.3 Work Complexity

Consider an execution of the PERR scheduler overn flows. The work involved
in processing each packet at the scheduler involves two parts: enqueueing and de-
queueing. Hence the work complexity of a scheduler is defined as the order of time
complexity, with respect ton of enqueueing and then dequeueing a packet for trans-
mission [12, 16]. Note thatn, the number of flows competing for a link can be of
the order of tens of thousands of flows in backbone routers. Hence it is desirable
that the work complexity should be as independent as possible ofn.

Theorem 3 The worst-case work complexity of the PERR scheduler isO(log p).

Proof. The time complexity of enqueueing a packet is the same as the time
complexity of theEnqueueroutine in Fig. 2, which is executed whenever a new
packet arrives at a flow. Identifying the flow at which the packet arrives is anO(1)
operation. If theActiveflag is not set for the flowi, theIdeal Allowance Utilization
for the flow is calculated which in turn determines the priority queue into which
the flow should be added. Also, if this priority queue is of a higher priority than the
priority queue which the PERR scheduler is serving, a flag is set to indicate that
after completing the transmission of the current packet, the scheduler should start
serving packets from the newly active flow. The addition of an item to the tail of a
linked-list data structure and conditionally setting a flag are bothO(1) operations.

Let us now consider the time complexity of dequeueing a packet. Assume that the
PERR scheduler is serving flows from the priority queuePQg. Note that at least one
packet is transmitted from each of the flows that are present inPQg. The operations
involved in serving flows in this priority queue include determining the next flow
to be served, removing this flow from the head of the priority queue and possibly
adding it into some other priority queue or the ActiveList. All these operations can
be executed inO(1) time. Additionally the PERR scheduler may need to update
certain per-flow variables which can be easily done in constant time. However once
the queuePQg is empty the PERR scheduler needs to determine the highest non-
empty priority queue. To aid in this, the PERR scheduler maintains a linked list
of the identifiers of all the non-empty priority queues. This linked list is sorted in
descending order of priority with the head of the list pointing to the highest non-
empty priority queue. The complexity of inserting a new identifier into this sorted
linked list is O(log p) wherep represents the total number of priority queues. To
select the highest non-empty priority queue, the PERR scheduler simply has to
read the identifier at the head of this sorted list which can be done inO(1) time.
Hence the overall time complexity of this operation isO(log p) A similar situation
arises when a flow is added into a priority queue which has a higher priority than
the current priority queue being served by the PERR scheduler. However if all the
priority queues are empty it is an indication that the current round has come to an
end. In this case, prior to the start of the subsequent round, theOrganizermodule
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has to classify all the flows present in theActiveListinto thep priority queues which
requiresO(n) time. However since each of then flows is guaranteed to transmit at
least one packet, the overall complexity of this operation isO(1).

Note that the PERR scheduler needs to sort the non-empty priority queues only
in the two special cases discussed above, unlike the sorted-priority algorithms like
WFQ and SCFQ where these sorting operations need to be executed prior to each
packet transmission resulting in aO(log n) work complexity wheren is the number
of active flows. Also, sincen À p, the work complexity of the PERR scheduler is
always lower than that of the sorted-priority schedulers. Hence the worst-case work
complexity of the PERR scheduler isO(log p) resulting in an efficient hardware
implementation.

6 Comparison with Other Schedulers

Table 1 summarizes the work complexity, fairness and latency bounds of several
guaranteed-rate scheduling disciplines that belong to the class of (LR) servers. In
this table,n represents the number of active flows andp represents the number of
priority queues in Pre-order DRR and PERR. The peak rate of the output link is
denoted byr. M is the size of the largest packet that may potentially arrive during
the execution of a scheduling algorithm. Recall thatm is the size of the largest
packet thatactuallyarrives during the execution of the scheduler. Usually, in most
networks including the Internet,M À m since the majority of packets are much
smaller than the largest possible packet [21, 22]. The properties of all the frame-
based scheduling disciplines are derived in [23]. The latency bounds of DRR and
Pre-order DRR have been analyzed in [24] and [25]. The RFB and latency bound
of ERR have been analyzed in [16, 19]. The expression for the latency bound of
Nested-DRR, as proved in [17], is extremely complex and hence does not allow for
an easy comparison with the other schedulers under consideration. Hence, in order
to gain a quick understanding of the differences in the latency bounds of Nested-
DRR and PERR, in our comparison we include the latency bound of Nested-DRR at
two boundary conditions. In the first case, we consider the latency bound of a flow
whose reserved rate is much lower than that of the other flows sharing the same
output link (ρi ¿ ρj, ∀j ∈ n, j 6= i). In the second case, we consider the opposite
end of the spectrum, i.e., the latency bound of a flow whose reserved rate is much
greater than the other flows multiplexed on the same link (ρi À ρj,∀j ∈ n, j 6= i).
In [17], an expression for the latency of a low-rate flow has been derived and it has
also been shown that the latency of a high-rate flow is marginally lower than that
of the DRR scheduler. For simplicity we assume the latter to be equal to DRR.
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Table 1: A Comparison between Scheduling Disciplines

Scheduler Complexity Fairness Latency Bound for flowi

GPS [6] — 0 0

Weighted Fair Queueing [7] O(log n) O(n)
m

r
+

m

ρi

Self Clocked Fair Queueing [8] O(log n) 2m
(n− 1)m

r
+

m

ρi

Virtual Clock [26] O(log n) ∞ m

r
+

m

ρi

Frame-based Fair Queueing [10] O(log n) 2M + m
m

r
+

m

ρi

Deficit Round Robin [12] O(1) M + 2m
1

r

{
(W − wi)Qmin + (m− 1)

(
W

wi

+ n− 2

)}

Elastic Round Robin [16,19] O(1) 3m
1

r
{(W − wi)Qmin + (m− 1)(n− 1)}

Low-rate:
1

r

{
(n− 1)Qmin + (m− 1)

(
W

wi

+ n− 2

)}

Nested-DRR [17] O(1) M + 2m

High-rate:
1

r

{
(W − wi)Qmin + (m− 1)

(
W

wi

+ n− 2

)}

Pre-order DRR [18] O(log p) 2M
p

+ 2m
1

r

{
(W − wi)Qmin

p
+ (m− 1)

(
W

wi

+ n− 2

)}

Prioritized ERR O(log p) 2m
p

+ 2m
1

r

{
(W − wi)Qmin

p
+ (m− 1)(n− 1)

}

The latency of the GPS [6] scheduler is zero since a newly active flow begins receiv-
ing service instantaneously at its reserved rate. However, GPS, while ideally fair, is
unimplementable. The sorted priority schedulers such as Weighted Fair Queueing
(WFQ) [7], Frame-based Fair Queueing (FFQ) [10] and Virtual Clock [26] have
a low value of the latency bound. The work complexity of all these schedulers,
however, is a function of the total number of flows. In fact, only ERR, DRR and
Nested-DRR have a work complexity ofO(1). ERR has better fairness properties
and a lower latency bound than DRR. As discussed earlier, ERR, DRR and Nested-
DRR are round-robin schedulers and hence suffer from the characteristic limita-
tions of all round robin schedulers. Both Pre-order DRR and PERR overcome these
drawbacks in the DRR and ERR schedulers respectively and also have a low work
complexity ofO(log p) which is independent of the number of flows. As explained
earlier, the basic principle of the PERR algorithm is similar to the Pre-order DRR
algorithm [18]. The Pre-order DRR scheduler alters the transmission sequence of
the packets in each DRR round based on the quantum utilization of each flow. The
PERR scheduler similarly changes the sequence in which packets are transmitted
in an ERR round depending on the utilization of the maximum possible allowance
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Fig. 9. Comparison of the latency bounds

of each flow in that round.

There is however an important difference between these two schedulers. At the start
of a round, the Pre-order DRR scheduler has to classify all the packets that will be
transmitted by the active flows in that round into the priority queues prior to starting
the transmission of the packets. On the contrary, the PERR scheduler simply has
to classify the flows present in theActiveList into its priority queues before the
start of the round. It has been shown in [19] that ERR has a couple of important
advantages over DRR. Now since the PERR and Pre-order DRR algorithms are
modifications of ERR and DRR, respectively, PERR inherits those advantages over
Pre-order DRR. The following lists these advantages:

• Lower Buffer Requirement :Since the priority queues in PERR simply need to
contain the flow identifiers they can be much smaller in size as compared to those
in Pre-order DRR which have to buffer all the packets that will be transmitted in
the current round.

• Reduced Round Start Delay :Classifying all the packets that are to be transmitted
in the round into the priority queues requires considerably more time than simply
sorting the flow identifiers. Thus, the delay incurred by the PERR scheduler at
the start of the round is much less in comparison to that incurred by the Pre-order
DRR scheduler.

• Improved Latency and Fairness Characteristics:Table 1 illustrates that PERR
has better fairness properties and a lower latency bound than Pre-order DRR,
especially considering thatM is typically much greater thanm.

• Adaptability in other contexts:Unlike DRR and Pre-order DRR, the PERR sched-
uler does not require the knowledge of the transmission time of each packet. As
a result the scheduler can be used in other networks such as wormhole networks,
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where the transmission time of a packet depends not only on the size of the
packet but also the downstream congestion. Similarly, PERR may be used in
ATM networks transmitting IP packets over AAL5, where the end of the packet
is not known until the last ATM cell of the packet arrives.

Note that the latency bound of aLR server is an extremely important QoS param-
eter since it has a direct influence of the the size of the playback buffers needed
at the receiver for real-time communication applications. In order that the reader
can fully appreciate the improvement in the latency characteristics of PERR, we
compare the latency bound of PERR with other efficient scheduling disciplines of
equivalent work complexity such as DRR, ERR, Nested-DRR and Pre-order DRR
within the context of an example. Note that for this comparison we use the actual
latency bound for Nested-DRR as proved in [17].

Let us assume that a total of 100 flows are multiplexed on an output link with a
transmission rate,r of 150 Mbps. Assume thatM is equal to 576 bytes, equal to
the minimum value of the Maximum Transmission Unit (MTU) required of all net-
works. Assume thatρmin is equal to 0.1Mbps and that the output link is completely
utilized, i.e.

∑n
i=1 ρi = r. Note that this implies that the sum of all the weights,W ,

is equal to150/0.1 = 1500. Let the number of priority queues in the priority queue
module of Pre-order DRR and PERR be equal to 10, i.e.,p = 10. We compare
the latency bounds of the afore-mentioned schedulers for flowi as a function of its
reserved rate,ρi, for two values ofm : (a)m = M , (b) m = M/2. Fig. 9 illustrates
a plot of these latency bounds of flowi for both the values ofm. Note that latency
bounds of all the schedulers under consideration depend on the sum of the weights
of all the flows but not on the distribution of the weights among all the flows other
than flowi. Therefore, the weights of the flows other than flowi are not discussed
in the context of this illustration. It can be easily seen that PERR has the lowest
latency bound among all the schedulers under consideration. The improvement in
the latency of PERR is even more apparent whenm < M .

7 Simulation Results

In this section, we first present a brief discussion on a recently proposed new mea-
sure of fairness which captures theinstantaneousbehavior of a scheduler. A more
detailed presentation of this measure may be found in [27]. We then present some
simulation results comparing the performance of PERR based on this new metric
with other efficient schedulers.

Table 1 lists the RFBs of the schedulers. However, measures such as the RFB
are based on the worst case performance, which is just one aspect of the fairness
achieved by a packet scheduler. For example, a scheduler that rarely reaches the
upper bound of the fairness measure will achieve the same measure of fairness
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as another scheduler that frequently or almost always operates at the same upper
bound. Therefore, we also need aninstantaneousmeasure of fairness that captures
the fairness achieved by the scheduler atanygiven instant of time.

To measure the fairness at any instant of time, we also need to consider situations
in real applications. The RFB is defined under the assumption that queues are con-
tinuously backlogged in the interval of interest. Such an assumption is rarely true in
real networks. In networks with real traffic, flow states can change frequently from
active state to idle state, or vice versa. However, existing measures of fairness have
not taken this factor into account. To effectively guide the design of a fair sched-
uler, a fairness measure should also be able to capture the performance under the
situation where flows change their states unpredictably.

A recently proposed measure of fairness described in [27] addresses these issues.
There are two components to this measure: one of how to handle real traffic where
flows are not always backlogged and the other of how to measure inequality in
service received by the flows. We review these components briefly in this section;
a detailed treatment and a more extensive rationale behind the approach may be
found in [27].

7.1 Handling a Newly Backlogged Flow

In order to evaluate the fairness of a scheduler in its treatment of a newly back-
logged flow, we need to first define the ideally fair way of doing this. We begin
with an examination of the ideal but unimplementable GPS scheduling discipline.

Let B(t) represent the set of backlogged flows at timet. Assume that the system
starts at timet = 0.

Definition 11 Let V (t) represent the virtual time function [6, 28] (also known as
the system potential) at timet. The virtual time is used to track the progress of the
GPS scheduler and is computed as follows:

V ′(t) =
dV (t)

dt
=


 ∑

i∈B(t)

wi



−1

(39)

Hence, the service received by a backlogged flow under the GPS server in the time
interval (0, t) is given bywiV

′(t). Intuitively, the virtual time represents the ideal
fair normalized service that each flow should have received by timet.

Let us now consider a set ofn flows served by a scheduling policyP . Consider a
case in which then flows have been backlogged since timet1. One of these flows,
flow i, changes its status from being backlogged to idle at timet2 > t1 and later
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becomes backlogged again at timet3 > t2. In order to accurately and meaningfully
compare the service received by all the flows at time instants aftert3, it is necessary
to assign an appropriate value of the normalized service received by flowi until
t3 so that the comparison is over the entire time interval(t1, t3). As mentioned
earlier, a newly backlogged flow should neither be favored nor be punished for its
idle period in the interval(t2, t3). Therefore, based on the discussion of the virtual
time, the service received by flowi at timet should bewiV (t). However, if flow
i has already received more service than the above amount of service before time
t2 while it was backlogged, then the total assumed service should beSent i(0, t2).
This is because a flow that receives excess service should not be able to become
idle and then immediately become backlogged again without being disadvantaged
later for the excess service it received earlier. These concepts and similar arguments
have also been made in [5,8,10,27].

In evaluating the fairness of a specific scheduler it is necessary to keep track of
the amount of service allocated by the above method. We borrow the method used
in [27] where a per-flow state known as thesession utilityis defined for this purpose.
This variable is independent of the scheduling discipline used by the scheduler and
is defined as a function of time. Letui(t) represent the session utility for flowi at
time instantt. Assume that the system starts at time 0. During the period(t1, t2)
that a flow is continuously backlogged, its session utility is updated as follows:

ui(t2) = ui(t1) +
Senti(t1, t2)

wi

(40)

We now discuss how to update the session utility of a flow that just becomes back-
logged. Let flowi become newly backlogged or backlogged again at timet. Let
B(t−) represent the set of flows that are backlogged just prior to the time that flow
i becomes backlogged. Our goal in assigning a session utility value to flowi at time
t is to ensure that the comparison between session utilities of all the flows is being
made as though the flows have all been backlogged for the same length of time.
Accordingly flowi is assigned the following session utility value:

ui(t) = max{ui(t−), V (t)} (41)

With the above definition of the session utility, a newly backlogged flow can be
treated as if it had been backlogged for the same length of time as all other flows.
Therefore, with a measure which is based on session utility, it is possible to capture
the fairness of a scheduler in its treatment of flows that are not always continuously
backlogged.
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7.2 The Gini Index

Various measures of inequality have been used in the field of economics for several
decades in the study of social wealth distribution and many other economic issues
of interest [29]. Some of these methods are related to the theory of majorization
used in mathematics as a measure of inequality [30]. This theory has occasionally
found use in research in computer networks in the fairness analysis of protocols
[31]. The fairness measure proposed in [27] and adopted in this report borrows
from a related measure of inequality developed in the field of economics based on
the concept of theLorenz curveandGini index[29].
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Fig. 10. An illustration of the Lorenz curve and Gini index in the measure of inequalities
among (a) income distribution (b) session utilities in a packet scheduler

Consider the problem of measuring the inequality amongk quantities,g1 ≤ g2 ≤
· · · ≤ gk. Defined0 = 0, anddi = di−1+gi, for 1 ≤ i ≤ k. Now, a plot ofdi against
i is a concave curve, known as theLorenz curve[32], as shown in Fig. 10(a). Note
that if there is perfect equality in thesek quantities, the Lorenz curve will be a
straight line starting from the origin. The Gini index measures the area between the
Lorenz curve and this straight line, and thus measures the inequality amongst thek
quantities [29].

In our case, we wish to measure the inequality in the session utilities of the back-
logged flows at any given instant of time. The Gini index in our case, therefore, is
the area between the Lorenz curve of the actual normalized service received and
the Lorenz curve corresponding to the ideally fair GPS scheduler.

When the sum of thek quantities is the same as the sum in the case of perfect
equality, the Lorenz curve always lies below the straight line corresponding to the
Lorenz curve of the ideal equal case, as shown in Fig. 10(a). However, the sum
of the session utilities with a real scheduler is almost never exactly identical to the
sum of the session utilities with the ideally fair GPS scheduler. Note that, in a work-
conserving scheduler, only the sum of the total service delivered is identical to that
in the ideally fair GPS scheduler; the sum of the session utilities is not identical to
that in the GPS system. In the Lorenz curve for a work-conserving scheduler, when
the sum of thek quantities is not the same as the sum in the case of perfect equality
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as with the GPS scheduler, a portion of the curve for the actual scheduler will lie
below and another portion will lie above the straight line Lorenz curve for the GPS
scheduler. This is illustrated in Fig. 10(b). The sum of the shaded areas in the figure
is the Gini index.

The computation of the Gini index is described formally as follows:

Definition 12 Let U(t) represent the set of the session utilities of the flows at
time instantt when served by a real scheduler and letG(t) denote a similar set
which is obtained when the flows are served with the ideal GPS scheduler. Let
uc1 , uc2 , . . . , uck

be the elements of the setU(t), such thatuc1 ≤ uc2 ≤ · · · ≤ uck
.

The Lorenz Curveof the set of session utilitiesU(t) is the functionF (i;U(t)),
given by,

F (i;U(t)) =
i∑

j=1

ucj
, 0 ≤ i ≤ k

The Gini index over thek elements inU(t) is computed as:

k∑

i=1

∣∣∣F (i;U(t))− F (i;G(t))
∣∣∣ (42)

As defined above, the closer the Lorenz curve ofU(t) is to the curve of GPS, the
smaller the Gini index is, and thus, the fairer the distribution of the session utilities.
From the definition of the virtual time function, we know that the normalized ser-
vice received by each flow at timet in the GPS system is equal to the virtual time,
V (t). Hence the Gini index can be computed as :

k∑

i=1

∣∣∣F (i;U(t))− F (i; V (t))
∣∣∣ (43)

With the Gini index, the fairness of a scheduler can be evaluated at each instant
during the execution of the scheduler. A comparison of schedulers based on their
Gini indices allows us to determine which scheduler achieves better fairness than
others at each instant of time.

7.3 Simulation Results

In our simulation experiments, we compare the Gini index of Pre-order DRR with
those of other efficient and fair schedulers such as DRR, ERR, Nested-DRR and
Pre-order DRR.

In our first set of experiments, the input queues are fed by backbone router traces.
We used the traces provided by the National Laboratory for Applied Network Re-
search [33]. Each input is fed by a router trace with a random starting time. Table 2
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Source 1 2 3 4 5

Router Abbr. 1 ANL APN BUF MEM TXS

Interface OC3 OC3 OC3 OC3 OC3

Lmin (bytes) 28 29 28 32 32

Lmax (bytes) 9,180 1,500 1,560 4,470 9,180

ravg (106Bps) 0.63 1.4 1.45 0.39 2.1

Weight (wi) 1.6 3.5 3.7 1 5.5

Link Capacity 6× 106 Bps

Total Time 50 seconds

shows the settings for this set of input traffic. The flow weights are set based on the
average rate of each flow. Here we the set the weight of the slowest flow as 1, and
weights of other flows are equal to the ratios of their average rate to the smallest
rate.

We first extract the length of each packet from the router traces and simulate a
scheduling system with continuously backlogged queues. Figure 11 shows the Gini
index at periodic instants of time for the schedulers under consideration. Recall that
the lower the Gini index, the more fair the algorithm. As is readily seen from the
graph, PERR outperforms all the other schedulers.

Table 2: Settings for Traffic Sources from Router Traces
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Fig. 11. Gini indices of schedulers on backlogged queues with packet lengths from back-
bone router traffic traces

1 The long names of routers are: Argonne National Laboratory(ANL), APAN(APN), Uni-
versity of Buffalo(BUF), University of Memphis(MEM) and Rice University(TXS)
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In our next set of experiments, we allow that the flows are not always backlogged,
while still using real router traces. Since we are more interested in the performance
when the link is close to fully utilized, we set the link capacity such that the sum
of average rates of all the flows is 99% of the link capacity. Figure 12(a) shows
the average length of arriving packets among all sessions during the simulation
interval. Figures 12(b)–(e) show the values of the Gini index observed for the five
different schedulers. For the sake of clarity, we plot each scheduler’s Gini index on
a separate graph, with that of the PERR scheduler plotted on each of the graphs.
Once again, we find that the PERR scheduler displays a lower Gini index than any
of the other schedulers of equivalent complexity at almost all instants of time.
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Fig. 12. Gini indices of schedulers with backbone router traffic traces

8 Conclusion

Elastic Round Robin (ERR), a recently proposed fair scheduler, is very efficient
with anO(1) work complexity. However ERR is a frame-based scheduler and hence
suffers from all the characteristic limitations of these schedulers which arise from
the round robin nature of their service order. In this report, we have presented a
novel scheduling discipline calledPrioritized Elastic Round Robin(PERR), which
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rearranges the sequence in which packets are transmitted in each round of the ERR
scheduler. This is achieved through the addition of a priority queue module con-
sisting ofp priority queues. AnOrganizermodule dynamically classifies the active
flows into these priority queues.

We have analytically shown that PERR has a low work complexity ofO(log p)
which is independent of the total number of flows, resulting in a simple and ef-
ficient hardware implementation. We also prove that PERR belongs to the class
of LR servers and also evaluate an upper bound on its latency using a novel
technique based on interpreting the PERR scheduler as an instance of the Nested
Deficit Round Robin algorithm. Our analysis also reveals that PERR has better
fairness characteristics and a significantly lower latency bound in comparison to
other scheduling disciplines of equivalent work complexity such as DRR, ERR and
Pre-order DRR. In addition, we have also presented simulation results, using both
synthetic and real traces, which corroborate the conclusions of our analysis.
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